Efficient scan mask techniques for connected components labeling algorithm

Block-based connected components labeling is by far the fastest algorithm to label the connected components in 2D binary images, especially when the image size is quite large. This algorithm produces a decision tree that contains 211 leaf nodes with 14 levels for the depth of a tree and an average depth of 1.5923. This article attempts to provide a faster method for connected components labeling. We propose two new scan masks for connected components labeling, namely, the pixel-based scan mask and the block-based scan mask. In the final stage, the block-based scan mask is transformed to a near-optimal decision tree. We conducted comparative experiments using different sources of images for examining the performance of the proposed method against the existing methods. We also performed an average tree depth analysis and tree balance analysis to consolidate the performance improvement over the existing methods. Most significantly, the proposed method produces a decision tree containing 86 leaf nodes with 12 levels for the depth of a tree and an average depth of 1.4593, resulting in faster execution time, especially when the foreground density is equal to or greater than the background density of the images.

[1]  Kenji Suzuki,et al.  A Run-Based One-and-a-Half-Scan Connected-Component Labeling Algorithm , 2010, Int. J. Pattern Recognit. Artif. Intell..

[2]  Azriel Rosenfeld,et al.  Digital Picture Processing, Volume 1 , 1982 .

[3]  Kenji Suzuki,et al.  An efficient first-scan method for label-equivalence-based labeling algorithms , 2010, Pattern Recognit. Lett..

[4]  Wichian Premchaiswadi,et al.  Fast convert OR-decision table to decision tree , 2010, 2010 Eighth International Conference on ICT and Knowledge Engineering.

[5]  Kenji Suzuki,et al.  Linear-time connected-component labeling based on sequential local operations , 2003, Comput. Vis. Image Underst..

[6]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[7]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[8]  Kenji Suzuki,et al.  A Linear-Time Two-Scan Labeling Algorithm , 2007, 2007 IEEE International Conference on Image Processing.

[9]  Kenneth C. Sevcik,et al.  The synthetic approach to decision table conversion , 1976, CACM.

[10]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[11]  B. Hoppe,et al.  FPGA Implementation of a Single Pass Real-Time Blob Analysis Using Run Length Encoding , 2008 .

[12]  A. AbuBaker,et al.  One Scan Connected Component Labeling Technique , 2007, 2007 IEEE International Conference on Signal Processing and Communications.

[13]  Kesheng Wu,et al.  Fast connected-component labeling , 2009, Pattern Recognit..

[14]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[15]  Bernard M. E. Moret,et al.  Decision Trees and Diagrams , 1982, CSUR.

[16]  Kenji Suzuki,et al.  A Run-Based Two-Scan Labeling Algorithm , 2008, IEEE Transactions on Image Processing.

[17]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[18]  Chun-Jen Chen,et al.  A linear-time component-labeling algorithm using contour tracing technique , 2004, Comput. Vis. Image Underst..

[19]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Rita Cucchiara,et al.  Optimized Block-Based Connected Components Labeling With Decision Trees , 2010, IEEE Transactions on Image Processing.

[21]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[22]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[23]  Arie Shoshani,et al.  Optimizing connected component labeling algorithms , 2005, SPIE Medical Imaging.

[24]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .