Aspects of Pulsar Navigation for Deep Space Mission Applications

This paper investigates the performance of pulsar-based navigation in deep space mission applications. The noise properties of X-ray based and radio-baspulsar measurements are examined and compared. A closed form parametric covariance analysis tool was developed in this study. It provides a rough estimate of the navigation performance associated with a deep space cruise that makes use of ion thrusters and sequential pulsar observations. In addition, the flight trajectory of the Dawn spacecraft was used to form a hypothetical deep space mission scenario that utilizes pulsars as navigation beacons. This simulated scenario accounts for clock uncertainty, pulsar timing noise, maneuver execution errors, sequential observation and interruptions between pulsar observations. A particle filter was implemented to reduce the large initial position uncertainty by resolving the number of pulsar wavelengths between the spacecraft and the Solar System Barycenter. The resulting position and velocity uncertainties from the particle filter can be used to initialize an Extended Kalman Filter, which estimates the spacecraft position and velocity for steady state operations.

[1]  B. Onaral,et al.  Fractal system as represented by singularity function , 1992 .

[2]  Jing-nan Liu,et al.  Autonomous navigation of Mars probe using X-ray pulsars: Modeling and results , 2013 .

[3]  M. Rayman,et al.  DAWN'S operations in cruise from Vesta to Ceres , 2014 .

[4]  Keith C. Gendreau,et al.  SEXTANT X-ray Pulsar Navigation demonstration: Flight system and test results , 2016, 2016 IEEE Aerospace Conference.

[5]  K. I. Kellermann,et al.  RadioAstron: An Earth-Space Radio Interferometer with a 350,000 km Baseline , 2012, 1303.5200.

[6]  J.R. Wright,et al.  GPS Composite Clock Analysis , 2007, 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum.

[7]  Eunsung Lee,et al.  Estimation of relative satellite position using transformed differential carrier-phase GPS measurements , 2007 .

[8]  R. Manchester,et al.  TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.

[9]  Darryll J. Pines,et al.  Recursive Estimation of Spacecraft Position Using X-ray Pulsar Time of Arrival Measurements , 2005 .

[10]  Zaven Arzoumanian,et al.  SEXTANT X-Ray Pulsar Navigation Demonstration: Additional On-Orbit Results , 2018 .

[11]  M. Bailes,et al.  Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array , 2015, 1510.04434.

[12]  D. Pines,et al.  SPACECRAFT NAVIGATION USING X-RAY PULSARS , 2006 .

[13]  T. Fukushima,et al.  A numerical time ephemeris of the Earth , 1999 .

[14]  Jason L. Speyer,et al.  Particle Filters With Adaptive Resampling Technique Applied to Relative Positioning Using GPS Carrier-Phase Measurements , 2011, IEEE Transactions on Control Systems Technology.

[15]  R. N. Manchester,et al.  Pulsar timing analysis in the presence of correlated noise , 2011, 1107.5366.

[16]  Stefano Bregni,et al.  Synchronization of Digital Telecommunications Networks , 2002 .

[17]  Donald B. Campbell,et al.  Measurement in Radio Astronomy , 2002 .

[18]  R. Manchester,et al.  tempo2, a new pulsar timing package ¿ II. The timing model and precision estimates , 2006, astro-ph/0607664.

[19]  Suneel I. Sheikh,et al.  On Pulse Phase Estimation and Tracking of Variable Celestial X-ray Sources , 2007 .

[20]  Jason L. Speyer,et al.  Autonomous Navigation Using X-Ray Pulsars and Multirate Processing , 2017 .

[21]  R. Manchester,et al.  The ATNF Pulsar Catalogue , 2003, astro-ph/0309219.

[22]  Axel Jessner,et al.  Autonomous Spacecraft Navigation With Pulsars , 2013, 1305.4842.

[23]  Jason L. Speyer,et al.  Stochastic Processes, Estimation, and Control , 2008, Advances in design and control.

[24]  D. Lorimer,et al.  Handbook of Pulsar Astronomy , 2004 .

[25]  Christopher T. Russell,et al.  The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres , 2012 .

[26]  A. A. Emadzadeh,et al.  Navigation in Space by X-ray Pulsars , 2011 .

[27]  Keith C. Gendreau,et al.  X-ray pulsar navigation algorithms and testbed for SEXTANT , 2015, 2015 IEEE Aerospace Conference.

[28]  J. Paredes,et al.  Feasibility study for a spacecraft navigation system relying on pulsar timing information , 2004 .

[29]  Darryll J. Pines,et al.  Spacecraft Navigation and Timing Using X‐ray Pulsars , 2011 .

[30]  Marie M. Largay,et al.  Performance of GPS On-Orbit Navstar Frequency Standards and Monitor Station Time References , 1998 .

[31]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[32]  Jie Ma,et al.  Pulsar navigation for interplanetary missions using CV model and ASUKF , 2012 .

[33]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2005 .

[34]  Jason L. Speyer,et al.  Hypothesis Testing for Resolving Integer Ambiguity in GPS , 2001 .

[35]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[36]  Darryll J. Pines,et al.  Recursive Estimation of Spacecraft Position and Velocity Using X-ray Pulsar Time of Arrival Measurements , 2006 .

[37]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .