Production of a molybdophore during metal-targeted dissolution of silicates by soil bacteria

[1]  J. Chorover,et al.  Element mobility patterns record organic ligands in soils on early Earth , 2005 .

[2]  D. Graham,et al.  Methanobactin, a Copper-Acquisition Compound from Methane-Oxidizing Bacteria , 2004, Science.

[3]  A. Anbar,et al.  Fe isotopic fractionation during mineral dissolution with and without bacteria , 2004 .

[4]  A. Anbar,et al.  Iron isotope fractionation during microbial reduction of iron: The importance of adsorption , 2004 .

[5]  A. Anbar,et al.  Molybdenum isotope fractionation during adsorption by manganese oxides , 2004 .

[6]  J. Kramers,et al.  Molybdenum isotope records as a potential new proxy for paleoceanography , 2003 .

[7]  A. Anbar,et al.  Nonbiological fractionation of Fe isotopes: evidence of an equilibrium isotope effect , 2003 .

[8]  N. Beukes,et al.  Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton , 2003 .

[9]  S. Chisholm,et al.  Cobalt limitation and uptake in Prochlorococcus , 2002 .

[10]  S. Welch,et al.  Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III) , 2002 .

[11]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[12]  Marc S. Cortese,et al.  Metal chelating properties of pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas spp. and the biological activities of the formed complexes , 2002, Biometals.

[13]  R. J. Williams,et al.  The involvement of molybdenum in life. , 2002, Biochemical and biophysical research communications.

[14]  Henry J Sun,et al.  Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions , 2002 .

[15]  A. Anbar,et al.  Natural mass-dependent variations in the isotopic composition of molybdenum , 2001 .

[16]  A. Matthews Kinetic iron stable isotope fractionation between iron (-II) and (-III) complexes in solution , 2001 .

[17]  C. W. Childs,et al.  Demonstration of significant abiotic iron isotope fractionation in nature , 2001 .

[18]  S. Brantley,et al.  Fractionation of Fe isotopes by soil microbes and organic acids , 2001 .

[19]  H. Buss,et al.  Using AFM and XPS to Evaluate Pitting by Bacteria Grown on Fe-Silicate Surfaces , 2001 .

[20]  A. Anbar,et al.  Precise determination of mass-dependent variations in the isotopic composition of molybdenum using MC-ICPMS. , 2001, Analytical chemistry.

[21]  C. L. Brierley,et al.  Present and future commercial applications of biohydrometallurgy , 2001 .

[22]  Xiangyang Zhou,et al.  Microenvironments of pH in biofilms grown on dissolving silicate surfaces , 2000 .

[23]  Yumiko Watanabe,et al.  Geochemical evidence for terrestrial ecosystems 2.6 billion years ago , 2000, Nature.

[24]  S. Brantley,et al.  Rates of bacteria-promoted solubilization of Fe from minerals: a review of problems and approaches , 2000 .

[25]  P. Croot,et al.  Production of extracellular Cu complexing ligands by eucaryotic phytoplankton in response to Cu stress , 2000 .

[26]  A. Anbar,et al.  Nonbiological fractionation of iron isotopes. , 2000, Science.

[27]  W. Page,et al.  Role of Molybdate and Other Transition Metals in the Accumulation of Protochelin by Azotobacter vinelandii , 2000, Applied and Environmental Microbiology.

[28]  C. Pantano,et al.  X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende , 2000 .

[29]  J. Ferry,et al.  Role of bacterial siderophores in dissolution of hornblende , 2000 .

[30]  M. Gericke,et al.  Bioleaching of copper sulphide concentrate using extreme thermophilic bacteria , 1999 .

[31]  M. Naldrett,et al.  The stability of the molybdenum-azotochelin complex and its effect on siderophore production in Azotobacter vinelandii , 1998, JBIC Journal of Biological Inorganic Chemistry.

[32]  W. Page,et al.  The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management. , 1998, Microbiology.

[33]  Steven W. Leavit Biogeochemistry, An Analysis of Global Change , 1998 .

[34]  G. Boyer,et al.  Siderophore-Mediated Aluminum Uptake by Bacillus megaterium ATCC 19213 , 1996, Applied and environmental microbiology.

[35]  Z. Dauter,et al.  Complexation of Molybdenum by Siderophores: Synthesis and Structure of the Double-Helical cis-Dioxomolybdenum(VI) Complex of a Bis(catecholamide) Siderophore Analogue , 1996 .

[36]  J. Moffett,et al.  Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress , 1996 .

[37]  W. Page,et al.  Production of the triacetecholate siderophore protochelin by Azotobacter vinelandii , 1995, Biometals.

[38]  B. Ahner,et al.  Phytochelatin production in marine algae. 1. An interspecies comparison , 1995 .

[39]  W. Page,et al.  Generation of Azotobacter vinelandii strains defective in siderophore production and characterization of a strain unable to produce known siderophores , 1992 .

[40]  K. Bruland,et al.  Spatial and temporal variability in copper complexation in the North Pacific , 1990 .

[41]  K. Bruland Complexation of zinc by natural organic ligands in the central North Pacific , 1989 .

[42]  C. Meyer Ore Metals Through Geologic History , 1985, Science.

[43]  W. Page,et al.  Iron- and molybdenum-repressible outer membrane proteins in competent Azotobacter vinelandii , 1982, Journal of bacteriology.

[44]  J. B. Kenworthy,et al.  Metal Pollution in the Aquatic Environment , 1980, Springer Berlin Heidelberg.

[45]  D. Dyrssen Aquatic Chemistry—an introduction emphasizing chemical equilibria in natural waters , 1972 .

[46]  K. H. Wedepohl Handbook of Geochemistry , 1969 .

[47]  K. Nealson,et al.  Isotopic Constraints on Biogeochemical Cycling of Fe , 2004 .

[48]  R. Korus,et al.  Metal binding by pyridine-2,6-bis(monothiocarboxylic acid), a biochelator produced by Pseudomonas stutzeri and Pseudomonas putida , 2004, Biodegradation.

[49]  A. S,et al.  Kinetic and equilibrium Fe isotope fractionation between aqueous Fe ( III ) and hematite , 2002 .

[50]  D. Lawson,et al.  Transport, homeostasis, regulation, and binding of molybdate and Tungstate to proteins. , 2002, Metal ions in biological systems.

[51]  L. Hersman The Role of Siderophores in Iron Oxide Dissolution , 2000 .

[52]  M. Neu Siderophore-Mediated Chemistry and Microbial Uptake of Plutonium , 2000 .

[53]  D. Lovley Environmental Microbe-Metal Interactions , 2000 .

[54]  S. Wood Organic Matter: Supergene Enrichment and Dispersion , 1997 .

[55]  John A. Raven,et al.  The early evolution of land plants: Aquatic ancestors and atmospheric interactions , 1995 .

[56]  M. Dilworth,et al.  Biology and biochemistry of nitrogen fixation , 1991 .

[57]  D. Williams,et al.  The Biological Chemistry of the Elements , 1991 .

[58]  R. Thorneley Metal ions and bacteria , 1990 .

[59]  W. Silvester Molybdenum limitation of asymbiotic nitrogen fixation in forests of Pacific Northwest America , 1989 .

[60]  M. N. Hughes,et al.  Metals and micro-organisms , 1989 .

[61]  H. Evans,et al.  Bacterial alternative nitrogen fixation systems. , 1988, Critical reviews in microbiology.

[62]  J. Neilands,et al.  Universal chemical assay for the detection and determination of siderophores. , 1987, Analytical biochemistry.

[63]  P. Huang,et al.  Interactions of soil minerals with natural organics and microbes , 1986 .

[64]  R. Hider Siderophore mediated absorption of iron , 1984 .

[65]  A. Chimiak Siderophores from microorganisms and plants , 1984 .

[66]  J. Kaeding U. Förstner und G. T. W. Wittmann:Metall Pollution in the aquatic Environment. Berlin, Heidelberg, New York, Springer‐Verlag, 1979, 486 S., 102 Abb., 94 Tab. , 1981 .

[67]  M. Nomura,et al.  Fundamental studies on the ion-exchange separation of boron isotopes. , 1977 .