Identification and Specification of the Mouse Skeletal Stem Cell

[1]  S. Morrison,et al.  Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. , 2014, Cell stem cell.

[2]  Daniel T. Montoro,et al.  Clonal analysis reveals nerve-dependent and independent roles on mammalian hind limb tissue maintenance and regeneration , 2014, Proceedings of the National Academy of Sciences.

[3]  G. Kilic,et al.  Decreased Femoral Cartilage Thickness in Patients With Systemic Sclerosis , 2014, The American journal of the medical sciences.

[4]  H. Shim,et al.  Intra‐Articular Injection of Mesenchymal Stem Cells for the Treatment of Osteoarthritis of the Knee: A Proof‐of‐Concept Clinical Trial , 2014, Stem cells.

[5]  Gerard A. Ateshian,et al.  Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation , 2014, Proceedings of the National Academy of Sciences.

[6]  N. Neff,et al.  Reconstructing lineage hierarchies of the distal lung epithelium using single cell RNA-seq , 2014, Nature.

[7]  R. Kandel,et al.  The clinical status of cartilage tissue regeneration in humans. , 2013, Osteoarthritis and cartilage.

[8]  C. Taniguchi,et al.  A liver HIF-2α/IRS2 pathway sensitizes hepatic insulin signaling and is modulated by VEGF inhibition , 2013, Nature Medicine.

[9]  D. Sahoo,et al.  Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells , 2013, Proceedings of the National Academy of Sciences.

[10]  T. Rando,et al.  Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity , 2013, Aging cell.

[11]  Michael Q. Zhang,et al.  OLego: fast and sensitive mapping of spliced mRNA-Seq reads using small seeds , 2013, Nucleic acids research.

[12]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[13]  Hans Clevers,et al.  Lineage Tracing Reveals Lgr5+ Stem Cell Activity in Mouse Intestinal Adenomas , 2012, Science.

[14]  Debashis Sahoo,et al.  Gene Expression Commons: An Open Platform for Absolute Gene Expression Profiling , 2012, PloS one.

[15]  K. Poss,et al.  Clonally dominant cardiomyocytes direct heart morphogenesis , 2012, Nature.

[16]  Charles P. Lin,et al.  Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. , 2012, Cell stem cell.

[17]  P Lindau,et al.  Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip , 2011, Nature.

[18]  P. Bianco Bone and the hematopoietic niche: a tale of two stem cells. , 2011, Blood.

[19]  Ben D. MacArthur,et al.  Mesenchymal and haematopoietic stem cells form a unique bone marrow niche , 2010, Nature.

[20]  F. Dell’Accio,et al.  Faculty Opinions recommendation of Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development. , 2010 .

[21]  Kozo Nakamura,et al.  Transcriptional regulation of endochondral ossification by HIF-2α during skeletal growth and osteoarthritis development , 2010, Nature Medicine.

[22]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[23]  C. Tabin,et al.  A Reevaluation of X-Irradiation Induced Phocomelia and Proximodistal Limb Patterning , 2009, Nature.

[24]  I. Weissman,et al.  Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. , 2006, Developmental cell.

[25]  András Simon,et al.  Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population , 2006, The Journal of cell biology.

[26]  Luigi Naldini,et al.  Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. , 2005, Cancer cell.

[27]  Keisuke Ito,et al.  Tie2/Angiopoietin-1 Signaling Regulates Hematopoietic Stem Cell Quiescence in the Bone Marrow Niche , 2004, Cell.

[28]  D. Burr,et al.  The importance of subchondral bone in the progression of osteoarthritis. , 2004, The Journal of rheumatology. Supplement.

[29]  D. Scadden,et al.  Osteoblastic cells regulate the haematopoietic stem cell niche , 2003, Nature.

[30]  F. Netter,et al.  Supplemental References , 2002, We Came Naked and Barefoot.

[31]  H. Redmond,et al.  Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  G. Sukhikh,et al.  Mesenchymal Stem Cells , 2002, Bulletin of Experimental Biology and Medicine.

[33]  M. Klagsbrun,et al.  Cartilage to bone—Angiogenesis leads the way , 1999, Nature Medicine.

[34]  Napoleone Ferrara,et al.  VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation , 1999, Nature Medicine.

[35]  C. Heldin,et al.  Mechanism of action and in vivo role of platelet-derived growth factor. , 1999, Physiological reviews.

[36]  P. Logan,et al.  Radiation-induced changes in bone. , 1998, Radiographics : a review publication of the Radiological Society of North America, Inc.

[37]  A. Friedenstein,et al.  Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers , 1987, Cell and tissue kinetics.

[38]  J. C. Finerty Parabiosis in physiological studies. , 1952, Physiological reviews.

[39]  Jerry C. Hu,et al.  Repair and tissue engineering techniques for articular cartilage , 2015, Nature Reviews Rheumatology.

[40]  R. Cancedda,et al.  Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. , 2000, Journal of cell science.

[41]  R. Cancedda,et al.  Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. J Cell Sci 113(Pt 1):59-69 , 2000 .