Pure and Hybrid Optimizers Applicable to Large-Scale Design Problem

Design-Informatics has three points of view. One of these points is the investigation of efficient optimization to generate hypothetical database for a large-scale design problem. the results of the present study indicates the hybrid method between differential evolution and genetic algorithm is better performance for efficient exploration in design space under the condition for large-scale engineering design problem within 102 order evolution at most.

[1]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[2]  Tea Tusar,et al.  Differential Evolution versus Genetic Algorithms in Multiobjective Optimization , 2007, EMO.

[3]  Isao Ono,et al.  A Real Coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distributed Crossover , 1997, ICGA.

[4]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[5]  Daisuke Sasaki,et al.  Efficient Search for Trade-Offs by Adaptive Range Multi-Objective Genetic Algorithms , 2005, J. Aerosp. Comput. Inf. Commun..

[6]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[7]  Takeshi Takatoya,et al.  Design-informatics approach applicable to real-world problem , 2011, 2011 IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making (MDCM).

[8]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[9]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[10]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[11]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[12]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[13]  Jonathan E. Fieldsend,et al.  A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts , 2005, EMO.

[14]  Masahiro Tanaka,et al.  GA-based decision support system for multicriteria optimization , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[15]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[16]  Tomoyuki Hiroyasu,et al.  Distributed genetic algorithms with a new sharing approach in multiobjective optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[17]  L. J. Eshleman RealCoded Genetic Algorithms and Interval-Schemata , 1993 .

[18]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.