A new method for deflecting liquid microjets

A new method is reported for deflecting a microscopic jet emanating from a nozzle away from the nozzle’s axis of symmetry. It relies on putting energy into the jet through an asymmetric heater embedded in the nozzle. This novel phenomenon is probed theoretically. It is shown that jet deflection is set by the competition among three effects. Two of these can be attributed to the variation with temperature of surface tension and the third to that of viscosity. Whether the contact line is fixed or free is shown to profoundly impact the extent of jet deflection at a given flow rate.