Reduction Mod p of Standard Bases

ABSTRACT We investigate the behavior of standard bases (in the sense of Hironaka and Grauert) for ideals in rings of formal power series over commutative rings with respect to specializations of the coefficients. For instance, we show that any ideal I of the ring of formal power series A[[X]] = A[[X 1 ,…, X N ]] with coefficients in a Noetherian ring A admits a standard basis whose image under every specialization of A onto a field is a standard basis of the image of I. Applications include a modular criterion for ideal membership in ℤ[[X]] and a constructibility result for ideal membership in K[[X]], where K is a field. # Communicated by A. Prestel. † To Volker Weispfenning, on his 60th birthday.

[1]  E. Bierstone,et al.  Relations among analytic functions. I , 1987 .

[2]  Karsten Schmidt-Göttsch Bounds and definablity over fields. , 1987 .

[3]  Dave Bayer,et al.  Grobner bases and extension of scalars , 1992 .

[4]  P. Ribenboim Extension of Hironaka's standard basis theorem for generalized power series , 1993 .

[5]  H. Michael Möller,et al.  Upper and Lower Bounds for the Degree of Groebner Bases , 1984, EUROSAM.

[6]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[7]  Volker Weispfenning Canonical comprehensive Gröbner bases , 2003, J. Symb. Comput..

[8]  Algebraically constructible functions and signs of polynomials , 1996, alg-geom/9609002.

[9]  Volker Weispfenning,et al.  Some Bounds for the Construction of Gröbner Bases , 1988, AAECC.

[10]  T. Becker Stability and buchberger criterion for standard bases in power series rings , 1990 .

[11]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[12]  Volker Weispfenning,et al.  Comprehensive Gröbner Bases , 1992, J. Symb. Comput..

[13]  Thomas Dubé,et al.  The Structure of Polynomial Ideals and Gröbner Bases , 2013, SIAM J. Comput..

[14]  Grete Hermann,et al.  Die Frage der endlich vielen Schritte in der Theorie der Polynomideale , 1926 .

[15]  H. Hironaka Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .

[16]  Hans Grauert,et al.  Über die deformation isolierter singularitäten analytischer mengen , 1971 .

[17]  L. van den Dries,et al.  Bounds in the theory of polynomial rings over fields. A nonstandard approach , 1984 .

[18]  B. Buchberger,et al.  Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .

[19]  Thomas Becker Standard Bases in Power Series Rings: Uniqueness and Superfluous Critical Pairs , 1993, J. Symb. Comput..

[20]  Thomas Beth,et al.  Applicable Algebra, Error-Correcting Codes, Combinatorics and Computer Algebra , 1988, Lecture Notes in Computer Science.

[21]  G. Pauer,et al.  On Lucky Ideals for Gröbner Basis Computations , 1992, J. Symb. Comput..

[22]  Gerhard Pfister,et al.  Advances and improvements in the theory of standard bases and syzygies , 1996 .

[23]  Thomas Becker,et al.  Standard Bases and Some Computations in Rings of Power Series , 1990, J. Symb. Comput..

[24]  A. Galligo A propos du théorème de préparation de weierstrass , 1974 .

[25]  Ferdinando Mora,et al.  An Algorithm to Compute the Equations of Tangent Cones , 1982, EUROCAM.

[26]  Matthias Aschenbrenner Ideal membership in polynomial rings over the integers , 2003, math/0305172.