Garnet-type solid-state fast Li ion conductors for Li batteries: critical review.

Batteries are electrochemical devices that store electrical energy in the form of chemical energy. Among known batteries, Li ion batteries (LiBs) provide the highest gravimetric and volumetric energy densities, making them ideal candidates for use in portable electronics and plug-in hybrid and electric vehicles. Conventional LiBs use an organic polymer electrolyte, which exhibits several safety issues including leakage, poor chemical stability and flammability. The use of a solid-state (ceramic) electrolyte to produce all-solid-state LiBs can overcome all of the above issues. Also, solid-state Li batteries can operate at high voltage, thus, producing high power density. Various types of solid Li-ion electrolytes have been reported; this review is focused on the most promising solid Li-ion electrolytes based on garnet-type metal oxides. The first studied Li-stuffed garnet-type compounds are Li5La3M2O12 (M = Nb, Ta), which show a Li-ion conductivity of ∼10(-6) at 25 °C. La and M sites can be substituted by various metal ions leading to Li-rich garnet-type electrolytes, such as Li6ALa2M2O12, (A = Mg, Ca, Sr, Ba, Sr0.5Ba0.5) and Li7La3C2O12 (C = Zr, Sn). Among the known Li-stuffed garnets, Li6.4La3Zr1.4Ta0.6O12 exhibits the highest bulk Li-ion conductivity of 10(-3) S cm(-1) at 25 °C with an activation energy of 0.35 eV, which is an order of magnitude lower than that of the currently used polymer, but is chemically stable at higher temperatures and voltages compared to polymer electrolytes. Here, we discuss the chemical composition-structure-ionic conductivity relationship of the Li-stuffed garnet-type oxides, as well as the Li ion conduction mechanism.

[1]  K. Knight,et al.  University of Huddersfield Repository Synthesis, conductivity and structural aspects of Nd3Zr2Li7−3xAlxO12 , 2022 .

[2]  L. Dhivya,et al.  Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets , 2013 .

[3]  R. Murugan,et al.  Li+ transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets , 2013 .

[4]  K. Kanamura,et al.  Fabrication of all-solid-state battery using Li5La3Ta2O12 ceramic electrolyte , 2013 .

[5]  Yang Shen,et al.  High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet , 2013 .

[6]  S. Manorama,et al.  Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. , 2013, Physical chemistry chemical physics : PCCP.

[7]  J. Janek,et al.  Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium , 2013 .

[8]  Quan Zhou,et al.  The ionic conductivity of Li6BaLa2M2O12 with coexisting Nb and Ta on the M sites , 2013, Ionics.

[9]  Hongjian Peng,et al.  Low temperature synthesis of Li5La3Nb2O12 with cubic garnet-type structure by sol–gel process , 2013, Journal of Sol-Gel Science and Technology.

[10]  N. Imanishi,et al.  Low temperature cubic garnet-type CO2-doped Li7La3Zr2O12 , 2013 .

[11]  K. I. Gnanasekar,et al.  Lithium ion conduction in Li5La3Ta2O12 and Li7La3Ta2O13 garnet-type materials , 2013, Journal of Electroceramics.

[12]  E. Wachsman,et al.  Highly Li-Stuffed Garnet-Type Li7+xLa3Zr2-xYxO12 , 2013 .

[13]  J. Sakamoto,et al.  The effect of 24c-site (A) cation substitution on the tetragonal–cubic phase transition in Li7−xLa3−xAxZr2O12 garnet-based ceramic electrolyte , 2012 .

[14]  K. Knight,et al.  Effect of Ga incorporation on the structure and Li ion conductivity of La3Zr2Li7O12. , 2012, Dalton transactions.

[15]  V. Thangadurai,et al.  Enhancing Li Ion Conductivity of Garnet-Type Li5La3Nb2O12 by Y- and Li-Codoping: Synthesis, Structure, Chemical Stability, and Transport Properties , 2012 .

[16]  S. Narayanan Development of Novel Garnet-Type Solid Electrolytes for Potential Application in Li Ion Batteries , 2012 .

[17]  P. Notten,et al.  Sol–gel synthesis and lithium ion conduction properties of garnet-type Li6BaLa2Ta2O12 , 2012 .

[18]  Yutao Li,et al.  Optimizing Li+ conductivity in a garnet framework , 2012 .

[19]  J. Goodenough,et al.  Optimum lithium-ion conductivity in cubic Li7−xLa3Hf2−xTaxO12 , 2012 .

[20]  Yutao Li,et al.  Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12 , 2012 .

[21]  J. Sakamoto,et al.  Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12 , 2012 .

[22]  J. Sakamoto,et al.  High conductivity of dense tetragonal Li7La3Zr2O12 , 2012 .

[23]  Jürgen Janek,et al.  Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7−xLa3Zr2−xTaxO12 with garnet-type structure , 2012 .

[24]  Jeff Sakamoto,et al.  Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 , 2012 .

[25]  Yutao Li,et al.  Low-temperature synthesis of Li7La3Zr2O12 with cubic garnet-type structure , 2012 .

[26]  Ming Xu,et al.  Mechanisms of Li + transport in garnet-type cubic Li 3+x La 3 M 2 O 12 (M = Te, Nb, Zr) , 2012 .

[27]  V. Thangadurai,et al.  Macroscopic and microscopic Li+ transport parameters in cubic garnet-type “Li6.5La2.5Ba0.5ZrTaO12” as probed by impedance spectroscopy and NMR , 2012 .

[28]  V. Thangadurai,et al.  First total H+/Li+ ion exchange in garnet-type Li5La3Nb2O12 using organic acids and studies on the effect of Li stuffing. , 2012, Inorganic chemistry.

[29]  Jeff Wolfenstine,et al.  The Role of Al and Li Concentration on the Formation of Cubic Garnet Solid Electrolyte of Nominal Composition Li7La3Zr2O12 , 2012 .

[30]  Wei Lai,et al.  High Ionic Conductivity Lithium Garnet Oxides of Li7−xLa3Zr2−xTaxO12 Compositions , 2012 .

[31]  Yutao Li,et al.  Li6La3SnMO12 (M = Sb, Nb, Ta), a Family of Lithium Garnets with High Li-Ion Conductivity , 2012 .

[32]  Hui Xie,et al.  High lithium ion conduction in garnet-type Li6La3ZrTaO12 , 2011 .

[33]  R. Murugan,et al.  High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet , 2011 .

[34]  Alexander Kuhn,et al.  Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12". , 2011, Physical chemistry chemical physics : PCCP.

[35]  Ying Jin,et al.  Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method , 2011 .

[36]  V. Thangadurai,et al.  Effect of Y substitution for Nb in Li5La3Nb2O12 on Li ion conductivity of garnet-type solid electrolytes , 2011 .

[37]  T. Yoshida,et al.  Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte , 2011 .

[38]  V. Thangadurai,et al.  Soft-Chemistry of Garnet-Type Li5+xBaxLa3–xNb2O12 (x = 0, 0.5, 1): Reversible H+ ↔ Li+ Ion-Exchange Reaction and Their X-ray, 7Li MAS NMR, IR, and AC Impedance Spectroscopy Characterization , 2011 .

[39]  Hui Xie,et al.  Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12 , 2011 .

[40]  Ki‐Hyun Kim,et al.  High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si , 2011 .

[41]  C. Galven,et al.  Instability of the Lithium Garnet Li7La3Sn2O12: Li+/H+ Exchange and Structural Study , 2011 .

[42]  Tetsuro Kobayashi,et al.  High lithium ionic conductivity in the garnet-type oxide Li7−X La3(Zr2−X, NbX)O12 (X = 0–2) , 2011 .

[43]  Phl Peter Notten,et al.  Sol–gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure , 2011 .

[44]  N. Imanishi,et al.  Synthesis of garnet-type Li7 − xLa3Zr2O12 − 1/2x and its stability in aqueous solutions , 2011 .

[45]  Martin Fisch,et al.  Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. , 2011, Inorganic chemistry.

[46]  E. Cussen,et al.  A comparison of the transport properties of lithium-stuffed garnets and the conventional phases Li3Ln3Te2O12 , 2011 .

[47]  C. Fisher,et al.  Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery , 2011 .

[48]  R. Murugan,et al.  Fast ionic conduction in cubic hafnium garnet Li7La3Hf2O12 , 2010 .

[49]  Q. Fang,et al.  Synthesis, ionic conductivity, and chemical compatibility of garnet-like lithium ionic conductor Li5La3Bi2O12 , 2010 .

[50]  T. Yoshida,et al.  Compatibility of Li7La3Zr2O12 Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode , 2010 .

[51]  T. Alam,et al.  Alternative Approach to Increasing Li Mobility in Li-La-Nb/Ta Garnet Electrolytes , 2010 .

[52]  E. Cussen,et al.  Structure and ionic conductivity in lithium garnets , 2010 .

[53]  X. P. Wang,et al.  Sol–gel synthesis and electrical properties of Li5La 3Ta 2O 12 lithium ionic conductors , 2010 .

[54]  V. Thangadurai,et al.  Tailor-made development of fast Li ion conducting garnet-like solid electrolytes. , 2010, ACS applied materials & interfaces.

[55]  H. Hayakawa,et al.  Neutron powder diffraction study of tetragonal Li7La3Hf2O12 with the garnet-related type structure , 2010 .

[56]  W. Weimin,et al.  Lithium-ionic diffusion and electrical conduction in the Li7La3Ta2O13 compounds , 2009 .

[57]  Norihito Kijima,et al.  Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure , 2009 .

[58]  E. Kendrick,et al.  Cation ordering in Li containing garnets: synthesis and structural characterisation of the tetragonal system, Li7La3Sn2O12. , 2009, Dalton transactions.

[59]  Yasuhiko Takahashi,et al.  Synthesis and crystallographic studies of garnet-related lithium-ion conductors Li6CaLa2Ta2O12 and Li6BaLa2Ta2O12 , 2009 .

[60]  Mark D. Smith,et al.  Crystal growth of a series of lithium garnets Ln(3)Li(5)Ta(2)O(12) (Ln=La, Pr, Nd): Structural properties, Alexandrite effect and unusual ionic conductivity , 2009 .

[61]  V. Thangadurai,et al.  Structure and lithium ion conductivity of garnet-like Li5La3Sb2O12 and Li6SrLa2Sb2O12 , 2008 .

[62]  P. Slater,et al.  Synthesis and structural characterisation of the Li ion conducting garnet-related systems, Li6ALa2Nb2O12 (A = Ca, Sr) , 2008 .

[63]  M. Vogel,et al.  Lithium ionic jump motion in the fast solid ion conductor Li(5)La(3)Nb(2)O(12). , 2008, Solid state nuclear magnetic resonance.

[64]  Venkataraman Thangadurai,et al.  Effect of lithium ion content on the lithium ion conductivity of the garnet-like structure Li5+xBaLa2Ta2O11.5+0.5x (x = 0–2) , 2008 .

[65]  Jeremy J. Titman,et al.  Switching on fast lithium ion conductivity in garnets : the structure and transport properties of Li3+xNd3Te2-xSbxO12 , 2008 .

[66]  E. Kendrick,et al.  Synthesis and characterisation of the garnet-related Li ion conductor, Li5Nd3Sb2O12 , 2008 .

[67]  Venkataraman Thangadurai,et al.  Lattice Parameter and Sintering Temperature Dependence of Bulk and Grain-Boundary Conduction of Garnet-like Solid Li-Electrolytes , 2008 .

[68]  V. Thangadurai,et al.  Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12 , 2007 .

[69]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[70]  Venkataraman Thangadurai,et al.  Lithium ion conductivity of Li5+xBaxLa3−xTa2O12 (x = 0–2) with garnet-related structure in dependence of the barium content , 2007 .

[71]  H. Meyer,et al.  The mechanism of Li-ion transport in the garnet Li5La3Nb2O12. , 2007, Physical chemistry chemical physics : PCCP.

[72]  T. W. S. Yip,et al.  A neutron diffraction study of the d{sup 0} and d{sup 10} lithium garnets Li{sub 3}Nd{sub 3}W{sub 2}O{sub 12} and Li{sub 5}La{sub 3}Sb{sub 2}O{sub 12} , 2007 .

[73]  E. Cussen,et al.  A neutron diffraction study of the d0 and d10 lithium garnets Li3Nd3W2O12 and Li5La3Sb2O12 , 2007 .

[74]  E. Cussen,et al.  Lithium dimer formation in the Li-conducting garnets Li5+xBaxLa3−xTa2O12 (0 < x ≤ 1.6) , 2007 .

[75]  G. Chen,et al.  Structure and Ionic-Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12 (Ln = Y, Pr, Nd, Sm−Lu) , 2006 .

[76]  Venkataraman Thangadurai,et al.  Recent progress in solid oxide and lithium ion conducting electrolytes research , 2006 .

[77]  Venkataraman Thangadurai,et al.  Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12 , 2006 .

[78]  E. Cussen The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. , 2006, Chemical communications.

[79]  V. Thangadurai,et al.  Investigations on electrical conductivity and chemical compatibility between fast lithium ion conducting garnet-like Li6BaLa2Ta2O12 and lithium battery cathodes , 2005 .

[80]  V. Thangadurai,et al.  Li6ALa2Nb2O12 (A=Ca, Sr, Ba): A New Class of Fast Lithium Ion Conductors with Garnet-Like Structure , 2005 .

[81]  Venkataraman Thangadurai,et al.  Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet‐Like Oxides for Fast Lithium Ion Conduction , 2005 .

[82]  Venkataraman Thangadurai,et al.  Crystal Structure Revision and Identification of Li+-Ion Migration Pathways in the Garnet-like Li5La3M2O12 (M = Nb, Ta) Oxides , 2004 .

[83]  Venkataraman Thangadurai,et al.  Lithium Lanthanum Titanates: A Review , 2003 .

[84]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[85]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[86]  A. West,et al.  Review of crystalline lithium-ion conductors suitable for high temperature battery applications , 1997 .

[87]  G. Adachi,et al.  Fast Li⊕ Conducting Ceramic Electrolytes , 1996 .

[88]  K. Hayashi,et al.  Crystal structures of La3Li5M2O12 (M=Nb, Ta) , 1988 .

[89]  F. Abbattista,et al.  Remarks on the binary systems Li2OMe2O5 (MeNb, Ta) , 1987 .

[90]  A. F. Wells,et al.  Structural Inorganic Chemistry , 1971, Nature.