Improved solar-blind detectivity using an AlxGa1−xN heterojunction p–i–n photodiode

We report the improved detectivity of AlxGa1−xN-based solar-blind p–i–n photodiodes with high zero-bias external quantum efficiency. The zero-bias external quantum efficiency was ∼42% at 269 nm, and increased to ∼46% at a reverse bias of −5 V. In addition, the photodiodes exhibited a low dark current density of 8.2×10−11 A/cm2 at a reverse bias of −5 V, which resulted in a large differential resistance. The high quantum efficiency and large differential resistance combine to yield a high detectivity of D*∼2.0×1014 cm Hz1/2 W−1. These results are attributed to the use of an Al0.6Ga0.4N window n region, which allows improved transmission to the absorption region, and to improved material quality.