Lessons from Environmental Chlamydiae

This chapter summarizes work on environmental chlamydiae performed primarily between 2008 and early 2011. The first studies on environmental chlamydiae reported the discoveries of Waddlia chondrophila, which was isolated from an aborted bovine fetus. Traditionally, chlamydial elementary bodies (EBs) are regarded as spore-like forms which are metabolically inert. The extracellular activity of chlamydial EBs was dependent on the incubation medium used, which may explain why EBs have not been previously shown to be metabolically active. A key feature of the natural host of many environmental chlamydiae, Acanthamoeba spp., is its ability to form cysts under adverse environmental conditions. For obligate intracellular bacteria like the chlamydiae, the term “host cell interactions” can be subdivided into the following temporally and spatially separated stages: microbe-host recognition, internalization, replicative phase with host cell exploitation, and finally persistence within or release from the host cell to start another infectious cycle. Environmental chlamydiae have been detected in a wide variety of vertebrate and invertebrate hosts, and some members of this group of bacteria have been proposed to cause disease in animals. Genomic comparison of environmental chlamydiae has revealed that Waddlia and Parachlamydia may be the most suitable chlamydial candidates for host-free cultivation, since these organisms have the most versatile biosynthetic capabilities among the chlamydiae.

[1]  R. Brunham,et al.  Unity in variety--the pan-genome of the Chlamydiae. , 2011, Molecular biology and evolution.

[2]  E. Wang,et al.  Effects of rhizobial inoculation, cropping systems and growth stages on endophytic bacterial community of soybean roots , 2011, Plant and Soil.

[3]  H. Rodger,et al.  A review of infectious gill disease in marine salmonid fish. , 2011, Journal of fish diseases.

[4]  O. Cissé,et al.  Permissivity of Vero cells, human pneumocytes and human endometrial cells to Waddlia chondrophila. , 2011, Microbes and infection.

[5]  M. Wagner,et al.  Proteomic analysis reveals a virtually complete set of proteins for translation and energy generation in elementary bodies of the amoeba symbiont Protochlamydia amoebophila , 2011, Proteomics.

[6]  M. Osterheld,et al.  Waddlia chondrophila: from bovine abortion to human miscarriage. , 2011, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[7]  J. Graf,et al.  Directed Culturing of Microorganisms Using Metatranscriptomics , 2011, mBio.

[8]  I. Khan,et al.  Further insights into the strange role of bacterial endosymbionts in whitefly, Bemisia tabaci: Comparison of secondary symbionts from biotypes B and Q in China , 2011, Bulletin of Entomological Research.

[9]  C. Sensen,et al.  Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. , 2011, Environmental science & technology.

[10]  J. Matsuo,et al.  Host range of obligate intracellular bacterium Parachlamydia acanthamoebae , 2010, Microbiology and immunology.

[11]  G. Allmaier,et al.  Proteomic aspects of Parachlamydia acanthamoebae infection in Acanthamoeba spp. , 2010, The ISME Journal.

[12]  T. Robertson,et al.  Identification of Chlamydial species in crocodiles and chickens by PCR-HRM curve analysis. , 2010, Veterinary microbiology.

[13]  S. Akira,et al.  Role of MyD88 and Toll-Like Receptors 2 and 4 in the Sensing of Parachlamydia acanthamoebae , 2010, Infection and Immunity.

[14]  B. Olsen,et al.  A novel Chlamydiaceae-like bacterium found in faecal specimens from sea birds from the Bering Sea. , 2010, Environmental microbiology reports.

[15]  C. Holland,et al.  Epitheliocystis in Atlantic salmon, Salmo salar L., farmed in fresh water in Ireland is associated with 'Candidatus Clavochlamydia salmonicola' infection. , 2010, Journal of fish diseases.

[16]  Kouhei Kawaguchi,et al.  Endosymbiotic bacterium Protochlamydia can survive in acanthamoebae following encystation. , 2010, Environmental microbiology reports.

[17]  M. Wagner,et al.  Raman microspectroscopy reveals long‐term extracellular activity of chlamydiae , 2010, Molecular microbiology.

[18]  M. Wagner,et al.  Inclusion Membrane Proteins of Protochlamydia amoebophila UWE25 Reveal a Conserved Mechanism for Host Cell Interaction among the Chlamydiae , 2010, Journal of bacteriology.

[19]  H. Schmidt-Posthaus,et al.  Novel Chlamydiales associated with epitheliocystis in a leopard shark Triakis semifasciata. , 2010, Diseases of aquatic organisms.

[20]  Gilbert GREUB,et al.  Parachlamydia acanthamoebae in domestic cats with and without corneal disease. , 2010, Veterinary ophthalmology.

[21]  A. Goesmann,et al.  The Waddlia Genome: A Window into Chlamydial Biology , 2010, PloS one.

[22]  Gilbert GREUB,et al.  Amoebal pathogens as emerging causal agents of pneumonia. , 2010, FEMS microbiology reviews.

[23]  Gilbert GREUB,et al.  Saccamoeba lacustris, sp. nov. (Amoebozoa: Lobosea: Hartmannellidae), a new lobose amoeba, parasitized by the novel chlamydia 'Candidatus Metachlamydia lacustris' (Chlamydiae: Parachlamydiaceae). , 2010, European journal of protistology.

[24]  A. West,et al.  Identification of 'Candidatus Piscichlamydia salmonis' in Arctic charr Salvelinus alpinus during a survey of charr production facilities in North America. , 2010, Diseases of aquatic organisms.

[25]  A. Schramm,et al.  Two Types of Endosymbiotic Bacteria in the Enigmatic Marine Worm Xenoturbellabocki , 2010, Applied and Environmental Microbiology.

[26]  Gilbert GREUB,et al.  Early intracellular trafficking of Waddlia chondrophila in human macrophages. , 2010, Microbiology.

[27]  Stefan Götz,et al.  SIMAP—a comprehensive database of pre-calculated protein sequence similarities, domains, annotations and clusters , 2009, Nucleic Acids Res..

[28]  M. W. Taylor,et al.  Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts , 2009, Environmental microbiology.

[29]  M. Ghanim,et al.  Co-infection and localization of secondary symbionts in two whitefly species , 2010, BMC Microbiology.

[30]  Kazuya Watanabe,et al.  Light/electricity conversion by a self-organized photosynthetic biofilm in a single-chamber reactor , 2010, Applied Microbiology and Biotechnology.

[31]  D. Raoult,et al.  High Throughput Sequencing and Proteomics to Identify Immunogenic Proteins of a New Pathogen: The Dirty Genome Approach , 2009, PloS one.

[32]  M Drancourt,et al.  Free-living amoebae, a training field for macrophage resistance of mycobacteria. , 2009, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[33]  D. Corsaro,et al.  Detection of Chlamydiae from freshwater environments by PCR, amoeba coculture and mixed coculture. , 2009, Research in microbiology.

[34]  A. Gervaix,et al.  Development of a real-time PCR for the specific detection of Waddlia chondrophila in clinical samples , 2009, European Journal of Clinical Microbiology & Infectious Diseases.

[35]  R. Heinzen,et al.  Host cell-free growth of the Q fever bacterium Coxiella burnetii , 2009, Proceedings of the National Academy of Sciences.

[36]  G. Andersen,et al.  Bacterial Diversity Analysis of Huanglongbing Pathogen-Infected Citrus, Using PhyloChip Arrays and 16S rRNA Gene Clone Library Sequencing , 2009, Applied and Environmental Microbiology.

[37]  Gilbert GREUB Parachlamydia acanthamoebae, an emerging agent of pneumonia. , 2009, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[38]  Gilbert Greub,et al.  Novel Chlamydiales strains isolated from a water treatment plant. , 2009, Environmental microbiology.

[39]  M. Horn Chlamydiae as symbionts in eukaryotes. , 2008, Annual review of microbiology.

[40]  A. Pospischil,et al.  Murine model of pneumonia caused by Parachlamydia acanthamoebae. , 2008, Microbial pathogenesis.

[41]  Burkhard Becker,et al.  Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes , 2008, BMC Evolutionary Biology.

[42]  Ahmed Moustafa,et al.  Chlamydiae Has Contributed at Least 55 Genes to Plantae with Predominantly Plastid Functions , 2008, PloS one.

[43]  M. Wagner,et al.  Chlamydia-like bacteria in respiratory samples of community-acquired pneumonia patients. , 2008, FEMS microbiology letters.

[44]  Gilbert GREUB,et al.  Waddlia chondrophila enters and multiplies within human macrophages. , 2008, Microbes and infection.

[45]  R. Heinzen,et al.  The Chlamydia trachomatis Plasmid Is a Transcriptional Regulator of Chromosomal Genes and a Virulence Factor , 2008, Infection and Immunity.

[46]  S. Kahane,et al.  The role of monocyte/macrophages as vehicles of dissemination of Simkania negevensis: an in vitro simulation model. , 2008, FEMS immunology and medical microbiology.

[47]  J. Neufeld,et al.  Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology , 2008, The ISME Journal.

[48]  Gilbert GREUB,et al.  Protochlamydia naegleriophila as Etiologic Agent of Pneumonia , 2008, Emerging infectious diseases.

[49]  A. Nylund,et al.  Characterization of 'Candidatus Clavochlamydia salmonicola': an intracellular bacterium infecting salmonid fish. , 2007, Environmental microbiology.

[50]  Kaisa Silander,et al.  Whole genome amplification with Phi29 DNA polymerase to enable genetic or genomic analysis of samples of low DNA yield. , 2008, Methods in molecular biology.

[51]  Quanzi Li,et al.  Unique Microbial Signatures of the Alien Hawaiian Marine Sponge Suberites zeteki , 2008, Microbial Ecology.

[52]  A. Pospischil,et al.  Parachlamydia spp. and Related Chlamydia-like Organisms and Bovine Abortion , 2007, Emerging infectious diseases.

[53]  O. Israelsson Chlamydial symbionts in the enigmatic Xenoturbella (Deuterostomia). , 2007, Journal of invertebrate pathology.

[54]  S. Kahane,et al.  Versatility of Simkania negevensis infection in vitro and induction of host cell inflammatory cytokine response. , 2007, The Journal of infection.

[55]  Gilbert GREUB,et al.  Waddlia chondrophila, a Potential Agent of Human Fetal Death , 2007, Emerging infectious diseases.

[56]  R. Radek,et al.  'Candidatus Rhabdochlamydia crassificans', an intracellular bacterial pathogen of the cockroach Blatta orientalis (Insecta: Blattodea). , 2007, Systematic and applied microbiology.

[57]  D. Greenberg,et al.  Simkania Negevensis in Bronchoalveolar Lavage of Lung Transplant Recipients: A Possible Association with Acute Rejection , 2007, Transplantation.

[58]  H. Hotzel,et al.  Hartmannella vermiformis (Hartmannellidae) harboured a hidden chlamydia-like endosymbiont , 2007 .

[59]  D. Greenberg,et al.  Domestic water supplies as a possible source of infection with Simkania. , 2007, The Journal of infection.

[60]  Jinling Huang,et al.  Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? , 2007, Genome Biology.

[61]  Gilbert GREUB,et al.  Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture. , 2006, Environmental microbiology.

[62]  B. Nowak,et al.  Epitheliocystis in fish. , 2006, Journal of fish diseases.

[63]  B. Wehrli,et al.  Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). , 2006, Environmental microbiology.

[64]  Gilbert GREUB,et al.  Parachlamydia acanthamoebae enters and multiplies within pneumocytes and lung fibroblasts. , 2006, Microbes and infection.

[65]  J. Hartley,et al.  Detection of Simkania negevensis by culture, PCR, and serology in respiratory tract infection in Cornwall, UK , 2006, Journal of Clinical Pathology.

[66]  S. Kohlhoff,et al.  Infection with Simkania negevensis in Brooklyn, New York , 2005, The Pediatric infectious disease journal.

[67]  Yasser M. Abdelrahman,et al.  The chlamydial developmental cycle. , 2005, FEMS microbiology reviews.

[68]  M. W. Taylor,et al.  'Candidatus Protochlamydia amoebophila', an endosymbiont of Acanthamoeba spp. , 2005, International journal of systematic and evolutionary microbiology.

[69]  M. Horn,et al.  Novel chlamydiae in whiteflies and scale insects: endosymbionts 'Candidatus Fritschea bemisiae' strain Falk and 'Candidatus Fritschea eriococci' strain Elm. , 2005, International journal of systematic and evolutionary microbiology.

[70]  D. Raoult,et al.  Lack of microbicidal response in human macrophages infected with Parachlamydia acanthamoebae. , 2005, Microbes and infection.

[71]  D. Raoult,et al.  Intracellular trafficking of Parachlamydia acanthamoebae , 2005, Cellular microbiology.

[72]  C. Hart,et al.  Isolation of Waddlia malaysiensis, A Novel Intracellular Bacterium, from Fruit Bat (Eonycteris spelaea) , 2005, Emerging infectious diseases.

[73]  J. Brown,et al.  Morphological variation inBemisia endosymbionts , 1995, Protoplasma.

[74]  N. Moran,et al.  The eubacterial endosymbionts of whiteflies (homoptera: Aleyrodoidea) constitute a lineage distinct from the endosymbionts of aphids and mealybugs , 1992, Current Microbiology.

[75]  L. Zöller,et al.  Free-living Amoebae Serve as a Host for the Chlamydia-like Bacterium Simkania negevensis , 2005 .

[76]  M. Wagner,et al.  Recovery of an environmental Chlamydia strain from activated sludge by co-cultivation with Acanthamoeba sp. , 2005, Microbiology.

[77]  Gilbert Greub,et al.  A genomic island present along the bacterial chromosome of the Parachlamydiaceae UWE25, an obligate amoebal endosymbiont, encodes a potentially functional F-like conjugative DNA transfer system , 2004, BMC Microbiology.

[78]  M. Wagner,et al.  A candidate NAD+ transporter in an intracellular bacterial symbiont related to Chlamydiae , 2004, Nature.

[79]  J. Handelsman Metagenomics: Application of Genomics to Uncultured Microorganisms , 2004, Microbiology and Molecular Biology Reviews.

[80]  A. West,et al.  Characterization of “Candidatus Piscichlamydia salmonis” (Order Chlamydiales), a Chlamydia-Like Bacterium Associated With Epitheliocystis in Farmed Atlantic Salmon (Salmo salar) , 2004, Journal of Clinical Microbiology.

[81]  Dmitrij Frishman,et al.  Illuminating the Evolutionary History of Chlamydiae , 2004, Science.

[82]  D. Drobne,et al.  'Candidatus Rhabdochlamydia porcellionis', an intracellular bacterium from the hepatopancreas of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). , 2004, International journal of systematic and evolutionary microbiology.

[83]  J. Evermann,et al.  Results of a New Serologic Test Suggest an Association of Waddlia Chondrophila with Bovine Abortion , 2003, Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc.

[84]  P. Timms,et al.  Wide range of Chlamydiales types detected in native Australian mammals. , 2003, Veterinary microbiology.

[85]  D. Raoult,et al.  Parachlamydia acanthamoeba Enters and Multiplies within Human Macrophages and Induces Their Apoptosis , 2003, Infection and Immunity.

[86]  S. Kahane,et al.  Infections with the chlamydia-like microorganism Simkania negevensis, a possible emerging pathogen. , 2003, Microbes and infection.

[87]  B. Falk,et al.  Phylogenetic Evidence for Two New Insect-Associated Chlamydia of the Family Simkaniaceae , 2003, Current Microbiology.

[88]  D. Greenberg,et al.  High Rate of Simkania negevensis among Canadian Inuit Infants Hospitalized with Lower Respiratory Tract Infections , 2003, Scandinavian journal of infectious diseases.

[89]  M. Valassina,et al.  Increasing Diversity within Chlamydiae , 2003, Critical reviews in microbiology.

[90]  D. Raoult,et al.  Antibiotic Susceptibilities of Parachlamydia acanthamoeba in Amoebae , 2002, Antimicrobial Agents and Chemotherapy.

[91]  D. Raoult,et al.  Crescent Bodies of Parachlamydia acanthamoeba and Its Life Cycle within Acanthamoeba polyphaga: an Electron Micrograph Study , 2002, Applied and Environmental Microbiology.

[92]  H. Granzow,et al.  Neospora caninum and Waddlia chondrophila strain 2032/99 in a septic stillborn calf. , 2002, Veterinary microbiology.

[93]  M. Scidmore,et al.  Proteins in the chlamydial inclusion membrane. , 2002, Microbes and infection.

[94]  P. Roepstorff,et al.  Comparative proteome analysis of Chlamydia trachomatis serovar A, D and L2 , 2002, Proteomics.

[95]  S. Kahane,et al.  Infection of Acanthamoeba polyphagawith Simkania negevensis and S. negevensis Survival within Amoebal Cysts , 2001, Applied and Environmental Microbiology.

[96]  G. Zhong,et al.  Identification of a Chlamydial Protease–Like Activity Factor Responsible for the Degradation of Host Transcription Factors , 2001, The Journal of experimental medicine.

[97]  K. Gevaert,et al.  Proteome analysis of the Chlamydia pneumoniaeelementary body , 2001, Electrophoresis.

[98]  K. Schleifer,et al.  Phylogenetic Diversity among Geographically Dispersed Chlamydiales Endosymbionts Recovered from Clinical and Environmental Isolates of Acanthamoeba spp , 2000, Applied and Environmental Microbiology.

[99]  M. Horn,et al.  Neochlamydia hartmannellae gen. nov., sp. nov. (Parachlamydiaceae), an endoparasite of the amoeba Hartmannella vermiformis. , 2000, Microbiology.

[100]  T. McElwain,et al.  Analysis of the 16S rRNA gene of micro-organism WSU 86-1044 from an aborted bovine foetus reveals that it is a member of the order Chlamydiales: proposal of Waddliaceae fam. nov., Waddlia chondrophila gen. nov., sp. nov. , 1999, International journal of systematic bacteriology.

[101]  S. Kahane,et al.  Seroprevalence of IgG antibodies to the chlamydia-like microorganism ‘Simkania Z’ by ELISA , 1999, Epidemiology and Infection.

[102]  D. Greenberg,et al.  High prevalence of "Simkania Z," a novel Chlamydia-like bacterium, in infants with acute bronchiolitis. , 1998, The Journal of infectious diseases.

[103]  S. Kahane,et al.  Pneumonia with serological evidence of acute infection with the Chlamydia-like microorganism "Z". , 1997, American journal of respiratory and critical care medicine.

[104]  T. Marrie,et al.  Chlamydia-like obligate parasite of free-living amoebae , 1997, The Lancet.

[105]  R. Amann,et al.  Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp , 1997, Applied and environmental microbiology.

[106]  D. Relman,et al.  Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates , 1996, Clinical microbiology reviews.

[107]  T. Hackstadt,et al.  Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[108]  S. Kahane,et al.  Evidence that the novel microorganism 'Z' may belong to a new genus in the family Chlamydiaceae. , 1995, FEMS microbiology letters.

[109]  M. Lindsay,et al.  Effects of fixative and buffer on morphology and ultrastructure of a freshwater planctomycete, Gemmata obscuriglobus , 1995 .

[110]  E. Stackebrandt,et al.  Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. , 1995, International journal of systematic bacteriology.

[111]  W. Beatty,et al.  Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. , 1994, Microbiological reviews.

[112]  M. R. Brown,et al.  Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. , 1994, Microbiology.

[113]  R. Michel,et al.  Acanthamoeba from human nasal mucosa infected with an obligate intracellular parasite , 1994 .

[114]  J. Elion,et al.  Description and partial characterization of a new Chlamydia-like microorganism. , 1993, FEMS microbiology letters.

[115]  T. Fritsche,et al.  Occurrence of bacterial endosymbionts in Acanthamoeba spp. isolated from corneal and environmental specimens and contact lenses , 1993, Journal of clinical microbiology.

[116]  A. Matsumoto,et al.  Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions. , 1991, Journal of electron microscopy.

[117]  J. Evermann,et al.  Isolation of a previously undescribed rickettsia from an aborted bovine fetus , 1990, Journal of clinical microbiology.

[118]  T. M. Bradley,et al.  Epitheliocystis associated with massive mortalities of cultured lake trout Salvelinus namaycush. , 1988 .

[119]  E. Chi,et al.  Unique ultrastructure in the elementary body of Chlamydia sp. strain TWAR , 1987, Journal of bacteriology.

[120]  T. M. Bradley,et al.  A light and electron microscope study of epitheliocystis in juvenile steelhead trout, Salmo gairdneri Richardson , 1984 .

[121]  G. Boros,et al.  A light and electron microscopic study of the agent of carp mucophilosis. , 1981 .

[122]  M. T. Silva,et al.  Ultrastructure of the Cell Wall and Cytoplasmic Membrane of Gram-Negative Bacteria with Different Fixation Techniques , 1973, Journal of bacteriology.

[123]  J. Moulder The Psittacosis Group as Bacteria. , 1964 .

[124]  N. S. Dekhtiarev Poeciloscytus cognatus , Fieb. (Hemiptera, Miridae) as a serious Pest of Sugar-beets , 1927 .

[125]  P. Ehrlich,et al.  Handbuch der pathogenen Protozoen , 1912 .

[126]  A. D. Bary Die Erscheinung der Symbiose: Vortrag , 1879 .