Electrically Driven Photonic Crystal Nanocavity Devices

Interest in photonic crystal nanocavities is fueled by advances in device performance, particularly in the development of low-threshold laser sources. Effective electrical control of high-performance photonic crystal lasers has thus far remained elusive due to the complexities associated with current injection into cavities. A fabrication procedure for electrically pumping photonic crystal membrane devices using a lateral p-i-n junction has been developed and is described in this study. We have demonstrated electrically pumped lasing in our junctions with a threshold of 181 nA at 50 K-the lowest threshold ever demonstrated in an electrically pumped laser. At room temperature, we find that our devices behave as single-mode light-emitting diodes (LEDs), which when directly modulated, have an ultrafast electrical response up to 10 GHz corresponding to less than 1 fJ/bit energy operation-the lowest for any optical transmitter. In addition, we have demonstrated electrical pumping of photonic crystal nanobeam LEDs, and have built fiber taper coupled electro-optic modulators. Fiber-coupled photodetectors based on two-photon absorption are also demonstrated as well as multiply integrated components that can be independently electrically controlled. The presented electrical injection platform is a major step forward in providing practical low power and integrable devices for on-chip photonics.

[1]  E. Haller,et al.  Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[2]  Bryan Ellis,et al.  Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction , 2010 .

[3]  B. Tell,et al.  Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85 mu m , 1990 .

[4]  Luca Dal Negro,et al.  Coupled fiber taper extraction of 1.53 microm photoluminescence from erbium doped silicon nitride photonic crystal cavities. , 2010, Optics express.

[5]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[6]  Soon-Hong Kwon,et al.  Electrically Driven Single-Cell Photonic Crystal Laser , 2004, Science.

[7]  M. Notomi,et al.  High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted , 2010 .

[8]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[9]  Axel Scherer,et al.  Defect Modes of a Two-Dimensional Photonic Crystal in an Optically Thin Dielectric Slab , 1999 .

[10]  P. Dapkus,et al.  Ultralow threshold current vertical-cavity surface-emitting lasers with AlAs oxide-GaAs distributed Bragg reflectors , 1995, IEEE Photonics Technology Letters.

[11]  F. Karouta,et al.  Photonic crystal slot nanobeam slow light waveguides for refractive index sensing , 2010 .

[12]  Dirk Englund,et al.  Ultrafast photonic crystal nanocavity laser , 2006 .

[13]  Jelena Vucković,et al.  Photonic crystal nanocavity array laser. , 2005, Optics express.

[14]  D. Erni,et al.  Ultrafast carrier dynamics in InP photonic crystals , 2005 .

[15]  Bryan Ellis,et al.  Nanobeam photonic crystal cavity light-emitting diodes , 2011, 1106.5803.

[16]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[17]  M. V. Rao Ion implantation in III–V compound semiconductors , 1993 .

[18]  Axel Scherer,et al.  Optimization of the Q factor in photonic crystal microcavities , 2002 .

[19]  M. Pate,et al.  Tuning self-assembled InAs quantum dots by rapid thermal annealing , 1997 .

[20]  D. Bouwmeester,et al.  Self-tuned quantum dot gain in photonic crystal lasers. , 2005, Physical review letters.

[21]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[22]  Henry I. Smith,et al.  Photonic-bandgap microcavities in optical waveguides , 1997, Nature.

[23]  Michael S. Shur,et al.  Ion-implanted GaAs-InGaAs lateral current injection laser , 1999 .

[24]  Dirk Englund,et al.  Low-threshold surface-passivated photonic crystal nanocavity laser , 2007 .

[25]  Sung-Bock Kim,et al.  Characteristics of electrically driven two-dimensional photonic crystal lasers , 2005 .

[26]  Charles M Lieber,et al.  Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection , 2006, Nature materials.

[27]  Masaya Notomi,et al.  Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity. , 2009, Optics express.

[28]  Mikael Östling,et al.  Carrier transport through a dry-etched InP-based two-dimensional photonic crystal , 2007 .

[29]  Bryan Ellis,et al.  Ultra-low Threshold electrically pumped quantum dot photonic crystal nanocavity laser , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[30]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[31]  Dirk Englund,et al.  Controlling cavity reflectivity with a single quantum dot , 2007, Nature.

[32]  Markus Pessa,et al.  Effects of rapid thermal annealing on GaInP/AlGaInP lasers grown by all-solid-source molecular beam epitaxy , 1997 .

[33]  Christian Schneider,et al.  Low threshold electrically pumped quantum dot-micropillar lasers , 2008 .

[34]  Masaya Notomi,et al.  All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip , 2010, 1002.3207.

[35]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[36]  F. Xia,et al.  Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects , 2010, Nature.

[37]  Kent D. Choquette,et al.  Modified spontaneous emission from laterally injected photonic crystal emitter , 2009 .

[38]  Andrei Faraon,et al.  Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity. , 2009, Physical review letters.

[39]  K. Vahala,et al.  Optomechanical crystals , 2009, Nature.

[40]  David D. Nolte,et al.  Surface recombination, free-carrier saturation, and dangling bonds in InP and GaAs , 1990 .

[41]  M. Lipson,et al.  Ultra high bandwidth WDM using silicon microring modulators. , 2010, Optics express.

[42]  A. Fiore,et al.  Enhanced spontaneous emission in a photonic-crystal light-emitting diode , 2008, 0805.2750.

[43]  Yasuhiko Arakawa,et al.  Room temperature continuous-wave lasing in photonic crystal nanocavity. , 2006, Optics express.

[44]  Bryan Ellis,et al.  Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[45]  P. Bhattacharya,et al.  Electrically injected quantum dot photonic crystal microcavity light emitters and microcavity arrays , 2007 .

[46]  Susumu Noda,et al.  Photonic crystal lasers—ultimate nanolasers and broad-area coherent lasers [Invited] , 2010 .

[47]  A. Stintz,et al.  Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots , 2004, quant-ph/0412085.

[48]  Marko Loncar,et al.  Photonic crystal nanobeam lasers , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[49]  Ming C. Wu,et al.  Enhanced modulation bandwidth of nanocavity light emitting devices. , 2009, Optics express.

[50]  Clayton C. Williams,et al.  TWO-DIMENSIONAL DOPANT PROFILING BY SCANNING CAPACITANCE MICROSCOPY , 1999 .

[51]  Kengo Nozaki,et al.  Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction , 2008 .

[52]  M. Notomi,et al.  Sub-femtojoule all-optical switching using a photonic-crystal nanocavity , 2010 .

[53]  J. Chyi,et al.  Resonant cavity-enhanced (RCE) photodetectors , 1991 .

[54]  S. Yoon,et al.  Effects of rapid thermal annealing on optical properties of p-doped and undoped InAs/InGaAs dots-in-a-well structures , 2008 .

[55]  Luca Dal Negro,et al.  Observation of transparency of Erbium-doped silicon nitride in photonic crystal nanobeam cavities. , 2010, Optics express.

[56]  Yoshinori Tanaka,et al.  Dynamic control of the Q factor in a photonic crystal nanocavity. , 2007, Nature materials.

[57]  P. Deotare,et al.  Programmable photonic crystal nanobeam cavities. , 2010, Optics express.

[58]  Gunnar Björk,et al.  Analysis of semiconductor microcavity lasers using rate equations , 1991 .

[59]  A. Scherer,et al.  Low-Threshold Photonic Crystal Laser , 2002 .

[60]  J. Harris,et al.  Nanobeam photonic crystal cavity quantum dot laser. , 2010, Optics express.

[61]  Jelena Vuckovic,et al.  Photonic crystal cavities in silicon dioxide , 2009, 0910.0222.