Tackling the Defects, Stability, and Photoluminescence of CsPbX3 Perovskite Nanocrystals

Defects have always been an integral part of semiconductor crystals, controlling their optical and electronic properties. Even though growing popularity of the CsPbX3 (X = Cl, Br, I, and their mixt...

[1]  Junying Zhang,et al.  High-Efficiency Violet-Emitting All-Inorganic Perovskite Nanocrystals Enabled by Alkaline-Earth Metal Passivation , 2019, Chemistry of Materials.

[2]  E. Sargent,et al.  Reducing Defects in Halide Perovskite Nanocrystals for Light-Emitting Applications. , 2019, The journal of physical chemistry letters.

[3]  Anirban Dutta,et al.  Near-Unity Photoluminescence Quantum Efficiency for All CsPbX3 (X=Cl, Br, and I) Perovskite Nanocrystals: A Generic Synthesis Approach. , 2019, Angewandte Chemie.

[4]  J. Brédas,et al.  Unlocking the Effect of Trivalent Metal Doping in All-Inorganic CsPbBr3 Perovskite , 2019, ACS Energy Letters.

[5]  Chenghao Bi,et al.  Thermally Stable Copper(II)-Doped Cesium Lead Halide Perovskite Quantum Dots with Strong Blue Emission. , 2019, The journal of physical chemistry letters.

[6]  L. Manna,et al.  Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties , 2019, Chemical reviews.

[7]  J. Luther,et al.  GeI2 Additive for High Optoelectronic Quality CsPbI3 Quantum Dots and Their Application in Photovoltaic Devices , 2019, Chemistry of Materials.

[8]  William W. Yu,et al.  Zn-Alloyed CsPbI3 Nanocrystals for Highly Efficient Perovskite Light-Emitting Devices. , 2019, Nano letters.

[9]  Yi Luo,et al.  Few-Nanometer-Sized α-CsPbI3 Quantum Dots Enabled by Strontium Substitution and Iodide Passivation for Efficient Red-Light Emitting Diodes. , 2019, Journal of the American Chemical Society.

[10]  William W. Yu,et al.  Cesium Lead Chloride/Bromide Perovskite Quantum Dots with Strong Blue Emission Realized via a Nitrate-Induced Selective Surface Defect Elimination Process. , 2018, The journal of physical chemistry letters.

[11]  R. Xie,et al.  Trimethylsilyl Iodine-Mediated Synthesis of Highly Bright Red-Emitting CsPbI3 Perovskite Quantum Dots with Significantly Improved Stability , 2019, Chemistry of Materials.

[12]  M. Kovalenko,et al.  Rationalizing and Controlling the Surface Structure and Electronic Passivation of Cesium Lead Halide Nanocrystals , 2018, ACS energy letters.

[13]  Lin-Wang Wang,et al.  Design Principles for Trap-Free CsPbX3 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases. , 2018, Journal of the American Chemical Society.

[14]  A. Samanta,et al.  Photoluminescence Flickering and Blinking of Single CsPbBr3 Perovskite Nanocrystals: Revealing Explicit Carrier Recombination Dynamics. , 2018, The journal of physical chemistry letters.

[15]  Anirban Dutta,et al.  Blue-Emitting CsPbCl3 Nanocrystals: Impact of Surface Passivation for Unprecedented Enhancement and Loss of Optical Emission. , 2018, The journal of physical chemistry letters.

[16]  Apurba De,et al.  Achieving Near-Unity Photoluminescence Efficiency for Blue-Violet-Emitting Perovskite Nanocrystals , 2018, ACS Energy Letters.

[17]  L. Herz How Lattice Dynamics Moderate the Electronic Properties of Metal-Halide Perovskites. , 2018, The journal of physical chemistry letters.

[18]  Z. Xia,et al.  Postsynthetic Surface Trap Removal of CsPbX3 (X = Cl, Br, or I) Quantum Dots via a ZnX2/Hexane Solution toward an Enhanced Luminescence Quantum Yield , 2018, Chemistry of Materials.

[19]  Anirban Dutta,et al.  Annealing CsPbX3 (X = Cl and Br) Perovskite Nanocrystals at High Reaction Temperatures: Phase Change and Its Prevention. , 2018, The journal of physical chemistry letters.

[20]  David T. Limmer,et al.  Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice , 2018, Proceedings of the National Academy of Sciences.

[21]  William W. Yu,et al.  Simultaneous Strontium Doping and Chlorine Surface Passivation Improve Luminescence Intensity and Stability of CsPbI3 Nanocrystals Enabling Efficient Light‐Emitting Devices , 2018, Advanced materials.

[22]  William W. Yu,et al.  PbS Capped CsPbI3 Nanocrystals for Efficient and Stable Light-Emitting Devices Using p–i–n Structures , 2018, ACS central science.

[23]  M. Ikegami,et al.  Stabilization of α-CsPbI3 in Ambient Room Temperature Conditions by Incorporating Eu into CsPbI3 , 2018, Chemistry of Materials.

[24]  T. Miyasaka,et al.  Invalidity of Band-Gap Engineering Concept for Bi3+ Heterovalent Doping in CsPbBr3 Halide Perovskite. , 2018, The journal of physical chemistry letters.

[25]  Zhiguo Xia,et al.  Synergetic Effect of Postsynthetic Water Treatment on the Enhanced Photoluminescence and Stability of CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals , 2018, Chemistry of Materials.

[26]  E. Alarousu,et al.  Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation , 2018, ACS Energy Letters.

[27]  Guopeng Li,et al.  Surface Ligand Engineering for Near-Unity Quantum Yield Inorganic Halide Perovskite QDs and High-Performance QLEDs , 2018, Chemistry of Materials.

[28]  L. Wan,et al.  Polar Solvent Induced Lattice Distortion of Cubic CsPbI3 Nanocubes and Hierarchical Self-Assembly into Orthorhombic Single-Crystalline Nanowires. , 2018, Journal of the American Chemical Society.

[29]  O. Bakr,et al.  Doping-Enhanced Short-Range Order of Perovskite Nanocrystals for Near-Unity Violet Luminescence Quantum Yield. , 2018, Journal of the American Chemical Society.

[30]  Qiao Zhang,et al.  One-Pot Synthesis of Highly Stable CsPbBr3@SiO2 Core-Shell Nanoparticles. , 2018, ACS nano.

[31]  William W. Yu,et al.  Emission Recovery and Stability Enhancement of Inorganic Perovskite Quantum Dots. , 2018, The journal of physical chemistry letters.

[32]  Anirban Dutta,et al.  Phase-Stable CsPbI3 Nanocrystals: The Reaction Temperature Matters. , 2018, Angewandte Chemie.

[33]  Colloidal Nanocrystals as a Platform for Rapid Screening of Charge Trap Passivating Molecules for Metal Halide Perovskite Thin Films , 2018, Chemistry of Materials.

[34]  Kaifeng Wu,et al.  Postsynthesis Phase Transformation for CsPbBr3/Rb4PbBr6 Core/Shell Nanocrystals with Exceptional Photostability. , 2018, ACS applied materials & interfaces.

[35]  Zhenda Lu,et al.  Enhancing Luminescence and Photostability of CsPbBr3 Nanocrystals via Surface Passivation with Silver Complex , 2018, The Journal of Physical Chemistry C.

[36]  A. Samanta,et al.  Boosting the Photoluminescence of CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals Covering a Wide Wavelength Range by Postsynthetic Treatment with Tetrafluoroborate Salts , 2018 .

[37]  D. Gamelin,et al.  Picosecond Quantum Cutting Generates Photoluminescence Quantum Yields Over 100% in Ytterbium-Doped CsPbCl3 Nanocrystals. , 2018, Nano letters.

[38]  Yitong Dong,et al.  Precise Control of Quantum Confinement in Cesium Lead Halide Perovskite Quantum Dots via Thermodynamic Equilibrium. , 2018, Nano letters.

[39]  R. Scheidt,et al.  To Exchange or Not to Exchange. Suppressing Anion Exchange in Cesium Lead Halide Perovskites with PbSO4–Oleate Capping , 2018 .

[40]  M. Kanatzidis,et al.  Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells. , 2018, ACS nano.

[41]  Chih-Jen Shih,et al.  Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability , 2018, ACS energy letters.

[42]  L. Manna,et al.  Benzoyl Halides as Alternative Precursors for the Colloidal Synthesis of Lead-Based Halide Perovskite Nanocrystals , 2018, Journal of the American Chemical Society.

[43]  Yi Luo,et al.  Ce3+-Doping to Modulate Photoluminescence Kinetics for Efficient CsPbBr3 Nanocrystals Based Light-Emitting Diodes. , 2018, Journal of the American Chemical Society.

[44]  Chen Wu,et al.  Highly Luminescent and Stable Perovskite Nanocrystals with Octylphosphonic Acid as a Ligand for Efficient Light-Emitting Diodes. , 2018, ACS applied materials & interfaces.

[45]  P. Kamat,et al.  Light-Induced Anion Phase Segregation in Mixed Halide Perovskites , 2018 .

[46]  Wasim J. Mir,et al.  Can B-Site Doping or Alloying Improve Thermal- and Phase-Stability of All-Inorganic CsPbX3 (X = Cl, Br, I) Perovskites? , 2018 .

[47]  Chenghao Bi,et al.  Original Core–Shell Structure of Cubic CsPbBr3@Amorphous CsPbBrx Perovskite Quantum Dots with a High Blue Photoluminescence Quantum Yield of over 80% , 2018 .

[48]  A. Emwas,et al.  Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes. , 2018, Journal of the American Chemical Society.

[49]  Hongwei Song,et al.  Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties. , 2017, Nano letters.

[50]  Baoquan Sun,et al.  Improving the Stability and Size Tunability of Cesium Lead Halide Perovskite Nanocrystals Using Trioctylphosphine Oxide as the Capping Ligand. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[51]  Sayantani Ghosh,et al.  Stabilization of the Cubic Crystalline Phase in Organometal Halide Perovskite Quantum Dots via Surface Energy Manipulation. , 2017, The journal of physical chemistry letters.

[52]  P. Ghosh,et al.  Origin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of CsPbBr3 Perovskite Nanocubes. , 2017, The journal of physical chemistry letters.

[53]  Takashi Minemoto,et al.  Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield. , 2017, ACS nano.

[54]  G. Konstantatos,et al.  Near-Unity Photoluminescence Quantum Yield in CsPbBr3 Nanocrystal Solid-State Films via Postsynthesis Treatment with Lead Bromide , 2017 .

[55]  Q. Akkerman,et al.  Fluorescent Alloy CsPbxMn1–xI3 Perovskite Nanocrystals with High Structural and Optical Stability , 2017, ACS energy letters.

[56]  Youngsik Kim,et al.  Highly Stable Cesium Lead Halide Perovskite Nanocrystals through in Situ Lead Halide Inorganic Passivation , 2017 .

[57]  H. Zeng,et al.  Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes. , 2017, Journal of the American Chemical Society.

[58]  He Huang,et al.  Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance , 2017, ACS energy letters.

[59]  Xiuru Xu,et al.  Aluminum‐Doped Cesium Lead Bromide Perovskite Nanocrystals with Stable Blue Photoluminescence Used for Display Backlight , 2017, Advanced science.

[60]  Xiao Wei Sun,et al.  Halide-Rich Synthesized Cesium Lead Bromide Perovskite Nanocrystals for Light-Emitting Diodes with Improved Performance , 2017 .

[61]  Noah D Bronstein,et al.  Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment. , 2017, Journal of the American Chemical Society.

[62]  Sara Bals,et al.  Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3 Perovskite Nanocrystals through Cation Exchange , 2017, Journal of the American Chemical Society.

[63]  Manas R. Parida,et al.  Engineering Interfacial Charge Transfer in CsPbBr3 Perovskite Nanocrystals by Heterovalent Doping. , 2017, Journal of the American Chemical Society.

[64]  C. Shan,et al.  High-Efficiency and Air-Stable Perovskite Quantum Dots Light-Emitting Diodes with an All-Inorganic Heterostructure. , 2017, Nano letters.

[65]  Lin-wang Wang,et al.  High Defect Tolerance in Lead Halide Perovskite CsPbBr3. , 2017, The journal of physical chemistry letters.

[66]  V. Klimov,et al.  Mn2+-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content. , 2016, Journal of the American Chemical Society.

[67]  Yongtian Wang,et al.  In Situ Fabrication of Halide Perovskite Nanocrystal‐Embedded Polymer Composite Films with Enhanced Photoluminescence for Display Backlights , 2016, Advanced materials.

[68]  Oleksandr Voznyy,et al.  Highly Efficient Perovskite‐Quantum‐Dot Light‐Emitting Diodes by Surface Engineering , 2016, Advanced materials.

[69]  Prashant V Kamat,et al.  Intriguing Optoelectronic Properties of Metal Halide Perovskites. , 2016, Chemical reviews.

[70]  H. Zeng,et al.  CsPbX3 Quantum Dots for Lighting and Displays: Room‐Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light‐Emitting Diodes , 2016 .

[71]  Zeger Hens,et al.  Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. , 2016, ACS nano.

[72]  David Cahen,et al.  Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. , 2015, The journal of physical chemistry letters.

[73]  Manas R. Parida,et al.  Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission. , 2015, The journal of physical chemistry letters.

[74]  T. Tachikawa,et al.  Surface Charge Trapping in Organolead Halide Perovskites Explored by Single-Particle Photoluminescence Imaging , 2015 .

[75]  Liberato Manna,et al.  Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions , 2015, Journal of the American Chemical Society.

[76]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[77]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[78]  C. S. Lim,et al.  Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping , 2010, Nature.

[79]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[80]  Liang Li,et al.  Core/Shell semiconductor nanocrystals. , 2009, Small.

[81]  M. Yin,et al.  Tunable magnetic exchange interactions in manganese-doped inverted core-shell ZnSe-CdSe nanocrystals. , 2008, Nature materials.