Predicting genome organisation and function with mechanistic modelling.

[1]  B. Javierre,et al.  High-resolution simulations of chromatin folding at genomic rearrangements in malignant B cells provide mechanistic insights into proto-oncogene deregulation , 2022, bioRxiv.

[2]  D. Marenduzzo,et al.  Nonequilibrium dynamics and action at a distance in transcriptionally driven DNA supercoiling , 2021, Proceedings of the National Academy of Sciences.

[3]  C. Dekker,et al.  Bridging-induced phase separation induced by cohesin SMC protein complexes , 2021, Science Advances.

[4]  T. Misteli The Self-Organizing Genome: Principles of Genome Architecture and Function , 2020, Cell.

[5]  Davide Marenduzzo,et al.  Mechanistic modeling of chromatin folding to understand function , 2020, Nature Methods.

[6]  L. Mirny,et al.  Loop extrusion: theory meets single-molecule experiments. , 2020, Current opinion in cell biology.

[7]  M. Martí-Renom,et al.  Transcriptional activation during cell reprogramming correlates with the formation of 3D open chromatin hubs , 2020, Nature Communications.

[8]  A. Musacchio,et al.  Human Condensin I and II Drive Extensive ATP-Dependent Compaction of Nucleosome-Bound DNA , 2020, Molecular cell.

[9]  D. Marenduzzo,et al.  Complex small-world regulatory networks emerge from the 3D organisation of the human genome , 2020, Nature Communications.

[10]  H. Kimura,et al.  Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner , 2020, eLife.

[11]  Daniel Jost,et al.  4D Genome Rewiring during Oncogene-Induced and Replicative Senescence , 2020, Molecular cell.

[12]  A. Pombo,et al.  Methods for mapping 3D chromosome architecture , 2019, Nature Reviews Genetics.

[13]  J. Peters,et al.  DNA loop extrusion by human cohesin , 2019, Science.

[14]  L. Mirny,et al.  Chromosome organization by one-sided and two-sided loop extrusion , 2019, bioRxiv.

[15]  D. Marenduzzo,et al.  Polymer Modeling Predicts Chromosome Reorganization in Senescence , 2019, Cell reports.

[16]  D. Marenduzzo,et al.  Nucleosome positions alone can be used to predict domains in yeast chromosomes , 2019, Proceedings of the National Academy of Sciences.

[17]  Wei Xie,et al.  The role of 3D genome organization in development and cell differentiation , 2019, Nature Reviews Molecular Cell Biology.

[18]  N. Gilbert,et al.  Role of nuclear RNA in regulating chromatin structure and transcription , 2019, Current opinion in cell biology.

[19]  L. Mirny,et al.  Two major mechanisms of chromosome organization. , 2019, Current opinion in cell biology.

[20]  L. Mirny,et al.  Heterochromatin drives compartmentalization of inverted and conventional nuclei , 2019, Nature.

[21]  Anders S. Hansen,et al.  Resolving the 3D landscape of transcription-linked mammalian chromatin folding , 2019, bioRxiv.

[22]  Eileen E M Furlong,et al.  The role of transcription in shaping the spatial organization of the genome , 2019, Nature Reviews Molecular Cell Biology.

[23]  Zhongyang Xing,et al.  A Numerical Study of Three-Armed DNA Hydrogel Structures , 2019, 1903.04186.

[24]  G. Tiana,et al.  Modeling the 3D Conformation of Genomes , 2019 .

[25]  Haobin Wang,et al.  Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation , 2018, The Journal of Biological Chemistry.

[26]  L. Mirny,et al.  Limits of chromosome compaction by loop-extruding motors , 2018, bioRxiv.

[27]  Martin Vingron,et al.  Dynamic 3D chromatin architecture contributes to enhancer specificity and limb morphogenesis , 2018, Nature Genetics.

[28]  Flavio Romano,et al.  Coarse-grained modelling of the structural properties of DNA origami , 2018, Nucleic acids research.

[29]  D. Marenduzzo,et al.  Transcription-driven genome organization: a model for chromosome structure and the regulation of gene expression tested through simulations , 2018, Nucleic acids research.

[30]  D. Marenduzzo,et al.  Polymer Simulations of Heteromorphic Chromatin Predict the 3D Folding of Complex Genomic Loci , 2018, bioRxiv.

[31]  Charles H. Li,et al.  Mediator and RNA polymerase II clusters associate in transcription-dependent condensates , 2018, Science.

[32]  K. Rippe,et al.  Formation of Chromatin Subcompartments by Phase Separation. , 2018, Biophysical journal.

[33]  T. Schlick,et al.  Chromatin Fiber Folding Directed by Cooperative Histone Tail Acetylation and Linker Histone Binding. , 2018, Biophysical journal.

[34]  D. Marenduzzo,et al.  Complementary chromosome folding by transcription factors and cohesin , 2018, bioRxiv.

[35]  S. Mundlos,et al.  Polymer physics predicts the effects of structural variants on chromatin architecture , 2018, Nature Genetics.

[36]  C. Dekker,et al.  Real-time imaging of DNA loop extrusion by condensin , 2018, Science.

[37]  Tine Curk,et al.  Coarse-grained simulation of DNA using LAMMPS , 2018, The European Physical Journal E.

[38]  J. Marko,et al.  Bend-Induced Twist Waves and the Structure of Nucleosomal DNA , 2018, bioRxiv.

[39]  D. Jost,et al.  Epigenomics in 3D: importance of long-range spreading and specific interactions in epigenomic maintenance , 2018, Nucleic acids research.

[40]  Dmitry V Klinov,et al.  A coarse-grained model for DNA origami , 2017, Nucleic acids research.

[41]  J. Ellenberg,et al.  Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins , 2017, The EMBO journal.

[42]  L. Mirny,et al.  Chromatin organization by an interplay of loop extrusion and compartmental segregation , 2017, Proceedings of the National Academy of Sciences.

[43]  Erez Lieberman Aiden,et al.  Cohesin Loss Eliminates All Loop Domains , 2017, Cell.

[44]  Nuno A. Fonseca,et al.  Two independent modes of chromatin organization revealed by cohesin removal , 2017, Nature.

[45]  D. Marenduzzo,et al.  Shaping epigenetic memory via genomic bookmarking , 2017, bioRxiv.

[46]  Marc A. Martí-Renom,et al.  Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors , 2017, PLoS Comput. Biol..

[47]  L. Mirny,et al.  Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization , 2017, Cell.

[48]  Cees Dekker,et al.  The condensin complex is a mechanochemical motor that translocates along DNA , 2017, Science.

[49]  Peter H. L. Krijger,et al.  The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension , 2017, Cell.

[50]  Viviana I. Risca,et al.  Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping , 2016, Nature.

[51]  Vijay S. Pande,et al.  OpenMM 7: Rapid development of high performance algorithms for molecular dynamics , 2016, bioRxiv.

[52]  Eivind Hovig,et al.  Hi-C-constrained physical models of human chromosomes recover functionally-related properties of genome organization , 2016, Scientific Reports.

[53]  Peter G Wolynes,et al.  Transferable model for chromosome architecture , 2016, Proceedings of the National Academy of Sciences.

[54]  James Allan,et al.  A Single Nucleotide Resolution Model for Large-Scale Simulations of Double Stranded DNA , 2016, bioRxiv.

[55]  D. Marenduzzo,et al.  Ephemeral protein binding to DNA shapes stable nuclear bodies and chromatin domains , 2016, bioRxiv.

[56]  Simona Bianco,et al.  Polymer physics of chromosome large-scale 3D organisation , 2016, Scientific Reports.

[57]  D. Marenduzzo,et al.  A Polymer Model with Epigenetic Recolouring Reveals a Pathway for the de novo Establishment and 3D organisation of Chromatin Domains , 2016, bioRxiv.

[58]  Davide Marenduzzo,et al.  Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains , 2016, Nucleic acids research.

[59]  Modesto Orozco,et al.  Multiscale simulation of DNA. , 2016, Current opinion in structural biology.

[60]  S. Mundlos,et al.  Breaking TADs: How Alterations of Chromatin Domains Result in Disease. , 2016, Trends in genetics : TIG.

[61]  Alexander Goncearenco,et al.  Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions. , 2016, Journal of molecular biology.

[62]  Peter Tompa,et al.  Polymer physics of intracellular phase transitions , 2015, Nature Physics.

[63]  Neva C. Durand,et al.  Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes , 2015, Proceedings of the National Academy of Sciences.

[64]  Yannick G. Spill,et al.  Restraint‐based three‐dimensional modeling of genomes and genomic domains , 2015, FEBS letters.

[65]  C. Brangwynne,et al.  RNA transcription modulates phase transition-driven nuclear body assembly , 2015, Proceedings of the National Academy of Sciences.

[66]  Michael Q. Zhang,et al.  CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function , 2015, Cell.

[67]  Carmay Lim,et al.  A simple biophysical model emulates budding yeast chromosome condensation , 2015, eLife.

[68]  Tamar Schlick,et al.  The chromatin fiber: multiscale problems and approaches. , 2015, Current opinion in structural biology.

[69]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[70]  K. Rippe,et al.  Changing chromatin fiber conformation by nucleosome repositioning. , 2014, Biophysical journal.

[71]  Daniel Jost,et al.  Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains , 2014, Nucleic acids research.

[72]  J. Dekker,et al.  Predictive Polymer Modeling Reveals Coupled Fluctuations in Chromosome Conformation and Transcription , 2014, Cell.

[73]  J. Doye,et al.  Plectoneme tip bubbles: Coupled denaturation and writhing in supercoiled DNA , 2014, Scientific Reports.

[74]  Juan J de Pablo,et al.  An experimentally-informed coarse-grained 3-Site-Per-Nucleotide model of DNA: structure, thermodynamics, and dynamics of hybridization. , 2013, The Journal of chemical physics.

[75]  D. Marenduzzo,et al.  Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization , 2013, Proceedings of the National Academy of Sciences.

[76]  Helgi I Ingólfsson,et al.  The power of coarse graining in biomolecular simulations , 2013, Wiley interdisciplinary reviews. Computational molecular science.

[77]  Diego di Bernardo,et al.  Colocalization of Coregulated Genes: A Steered Molecular Dynamics Study of Human Chromosome 19 , 2013, PLoS Comput. Biol..

[78]  Lars Nordenskiöld,et al.  An Advanced Coarse-Grained Nucleosome Core Particle Model for Computer Simulations of Nucleosome-Nucleosome Interactions under Varying Ionic Conditions , 2013, PloS one.

[79]  Mario Nicodemi,et al.  Complexity of chromatin folding is captured by the strings and binders switch model , 2012, Proceedings of the National Academy of Sciences.

[80]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[81]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[82]  Bin Zhang,et al.  Biogenesis and function of nuclear bodies. , 2011, Trends in genetics : TIG.

[83]  L. Mirny The fractal globule as a model of chromatin architecture in the cell , 2011, Chromosome Research.

[84]  J. Doye,et al.  Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. , 2010, The Journal of chemical physics.

[85]  J. Doye,et al.  DNA nanotweezers studied with a coarse-grained model of DNA. , 2009, Physical review letters.

[86]  Davide Marenduzzo,et al.  Entropic organization of interphase chromosomes , 2009, The Journal of cell biology.

[87]  T. Schlick,et al.  A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments. , 2009, The journal of physical chemistry. A.

[88]  Ralf Everaers,et al.  Structure and Dynamics of Interphase Chromosomes , 2008, PLoS Comput. Biol..

[89]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[90]  J. V. D. Maarel,et al.  Introduction To Biopolymer Physics , 2007 .

[91]  D. Schwartz,et al.  A coarse grain model for DNA. , 2007, The Journal of chemical physics.

[92]  Hans-Jörg Limbach,et al.  ESPResSo - an extensible simulation package for research on soft matter systems , 2006, Comput. Phys. Commun..

[93]  N. Cozzarelli,et al.  13S Condensin Actively Reconfigures DNA by Introducing Global Positive Writhe Implications for Chromosome Condensation , 1999, Cell.

[94]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[95]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[96]  L. Mirny,et al.  Formation of Chromosomal Domains by Loop Extrusion , 2016 .

[97]  L. Dijkhuizen,et al.  Martini Coarse-Grained Force Field: Extension to DNA. , 2015, Journal of chemical theory and computation.

[98]  T. Cremer,et al.  Chromosome territories. , 2010, Cold Spring Harbor perspectives in biology.

[99]  C. Cremer NUCLEAR ARCHITECTURE AND GENE REGULATION IN MAMMALIAN CELLS , 2001 .

[100]  I. Amit,et al.  Supporting Online Material Materials and Methods Som Text Comprehensive Mapping of Long-range Interactions Reveals Folding Principles of the Human Genome , 2022 .

[101]  Mohammed R. Rasheed,et al.  : Structural , 2022 .