A flexible factor analysis based on the class of mean-mixture of normal distributions

[1]  N. Balakrishnan,et al.  A test for multivariate skew-normality based on its canonical form , 2014, J. Multivar. Anal..

[2]  A mixture of common skew-t factor analysers: A mixture of common skew-t factor analysers , 2014 .

[3]  Geoffrey J. McLachlan,et al.  On mixtures of skew normal and skew $$t$$-distributions , 2012, Adv. Data Anal. Classif..

[4]  N. Balakrishnan,et al.  Mean mixtures of normal distributions: properties, inference and application , 2018, Metrika.

[5]  Angela Montanari,et al.  A skew-normal factor model for the analysis of student satisfaction towards university courses , 2010 .

[6]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[7]  Geoffrey J. McLachlan,et al.  Extending mixtures of factor models using the restricted multivariate skew-normal distribution , 2013, J. Multivar. Anal..

[8]  Paulino Pérez Rodríguez,et al.  On testing the skew normal hypothesis , 2010 .

[9]  Ryan P. Browne,et al.  Mixtures of skew-t factor analyzers , 2013, Comput. Stat. Data Anal..

[10]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[11]  Ryan P. Browne,et al.  A mixture of generalized hyperbolic factor analyzers , 2013, Advances in Data Analysis and Classification.

[12]  Sharon X. Lee,et al.  Robust mixtures of factor analysis models using the restricted multivariate skew-t distribution , 2018 .

[13]  Xiao-Li Meng,et al.  Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .

[14]  A. Basilevsky,et al.  Factor Analysis as a Statistical Method. , 1964 .

[15]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[16]  M. Liu,et al.  Skew-normal factor analysis models with incomplete data , 2015 .

[17]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[18]  A. Jamalizadeh,et al.  A skew factor analysis model based on the normal mean–variance mixture of Birnbaum–Saunders distribution , 2020, Journal of applied statistics.

[19]  C. Spearman General intelligence Objectively Determined and Measured , 1904 .

[20]  A. Azzalini,et al.  Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.

[21]  Wan-Lun Wang,et al.  Model-based clustering of censored data via mixtures of factor analyzers , 2019, Comput. Stat. Data Anal..

[22]  D. Rubin,et al.  The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence , 1994 .

[23]  J. Mesirov,et al.  Automated high-dimensional flow cytometric data analysis , 2009, Proceedings of the National Academy of Sciences.

[24]  Saumyadipta Pyne,et al.  Maximum likelihood inference for mixtures of skew Student-t-normal distributions through practical EM-type algorithms , 2012, Stat. Comput..

[25]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[26]  A. C. Aitken XXV.—On Bernoulli's Numerical Solution of Algebraic Equations , 1927 .

[27]  Tsung-I Lin,et al.  A novel mixture model using the multivariate normal mean-variance mixture of Birnbaum-Saunders distributions and its application to extrasolar planets , 2019, J. Multivar. Anal..

[28]  Sharon X. Lee,et al.  A robust factor analysis model using the restricted skew-$$t$$t distribution , 2015 .

[29]  D. M. Titterington,et al.  Mixtures of Factor Analysers. Bayesian Estimation and Inference by Stochastic Simulation , 2004, Machine Learning.

[30]  Geoffrey J. McLachlan,et al.  Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution , 2007, Comput. Stat. Data Anal..

[31]  José A. Villaseñor Alva,et al.  A Generalization of Shapiro–Wilk's Test for Multivariate Normality , 2009 .

[32]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[33]  A. Basilevsky Statistical Factor Analysis and Related Methods: Theory and Applications , 1994 .

[34]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.