Perturbation analysis of generalized saddle point systems

We discuss the perturbation analysis of generalized saddle point systems in this paper. We give the nonlinear perturbation bounds, then derive the condition numbers, and analyze the sensitivity of the computed solutions.

[1]  R. Sani,et al.  Incompressible Flow and the Finite Element Method, Volume 1, Advection-Diffusion and Isothermal Laminar Flow , 1998 .

[2]  Yimin Wei,et al.  A note on solving EP inconsistent linear systems , 2005, Appl. Math. Comput..

[3]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[4]  Pavel B. Bochev,et al.  On the Finite Element Solution of the Pure Neumann Problem , 2005, SIAM Rev..

[5]  Yimin Wei,et al.  Corrected Uzawa methods for solving large nonsymmetric saddle point problems , 2006, Appl. Math. Comput..

[6]  K. Chen,et al.  Matrix preconditioning techniques and applications , 2005 .

[7]  H. Walker,et al.  GMRES On (Nearly) Singular Systems , 1997, SIAM J. Matrix Anal. Appl..

[8]  M. Rozložník,et al.  Numerical stability of GMRES , 1995 .

[9]  S. Vavasis Stable Numerical Algorithms for Equilibrium Systems , 1994, SIAM J. Matrix Anal. Appl..

[10]  Z. Cao Positive stable block triangular preconditioners for symmetric saddle point problems , 2007 .

[11]  G. Strang A Framework for Equilibrium Equations , 1988 .

[12]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[13]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[14]  David Trujillo,et al.  Vorticity-velocity-pressure formulation for Stokes problem , 2003, Math. Comput..

[15]  Ji-guang Sun Structured backward errors for KKT systems , 1999 .

[16]  Xin-xiuLi,et al.  STRUCTURED BACKWARD ERRORS FOR STRUCTURED KKT SYSTEMS , 2004 .

[17]  Nicholas I. M. Gould,et al.  Implicit-Factorization Preconditioning and Iterative Solvers for Regularized Saddle-Point Systems , 2006, SIAM J. Matrix Anal. Appl..

[18]  V. Mehrmann,et al.  Perturbation theory for matrix equations , 2003, IEEE Transactions on Automatic Control.

[19]  Israel Koltracht,et al.  Mixed componentwise and structured condition numbers , 1993 .

[20]  Gene H. Golub,et al.  A Class of Nonsymmetric Preconditioners for Saddle Point Problems , 2005, SIAM J. Matrix Anal. Appl..

[21]  Xin-xiu Li,et al.  STRUCTURED BACKWARD ERRORS FOR STRUCTURED KKT SYSTEMS ∗1) , 2004 .

[22]  Yimin Wei,et al.  Perturbation bounds for constrained and weighted least squares problems , 2002 .

[23]  Weiwei Sun,et al.  A Fast Algorithm for the Electromagnetic Scattering from a Large Cavity , 2005, SIAM J. Sci. Comput..

[24]  Michel Fortin Finite element solution of the Navier—Stokes equations , 1993, Acta Numerica.

[25]  R. L. Sani,et al.  Isothermal laminar flow , 2000 .

[26]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[27]  Alan J. Laub,et al.  Statistical Condition Estimation for Linear Systems , 1998, SIAM J. Sci. Comput..

[28]  Miroslav Rozlozník,et al.  Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES , 2006, SIAM J. Matrix Anal. Appl..

[29]  Yiqin Lin,et al.  A new nonlinear Uzawa algorithm for generalized saddle point problems , 2006, Appl. Math. Comput..

[30]  Zhi-Hao Cao Comparison of performance of iterative methods for singular and nonsingular saddle point linear systems arising from Navier-Stokes equations , 2006, Appl. Math. Comput..

[31]  Yimin Wei,et al.  Solving EP singular linear systems , 2004, Int. J. Comput. Math..

[32]  Frank J. Hall Generalized Inverses of a Bordered Matrix of Operators , 1975 .

[33]  Zhi-Hao Cao Fast uzawa algorithm for generalized saddle point problems , 2003 .

[34]  Mårten Gulliksson,et al.  Perturbation theory for generalized and constrained linear least squares , 2000 .

[35]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.