ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC CHEN SYSTEM

The hyperchaotic Newton-Leipnik system (Ghosh and Bhattacharya, 2010) is one of the recently discovered four-dimensional hyperchaotic systems. This paper investigates the adaptive control and synchronization of hyperchaotic Newton-Leipnik system with unknown parameters. First, adaptive control laws are designed to stabilize the hyperchaotic Newton-Leipnik system to its unstable equilibrium at the origin based on the adaptive control theory and Lyapunov stability theory. Then adaptive control laws are derived to achieve global chaos synchronization of identical hyperchaotic Newton-Leipnik systems with unknown parameters. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive stabilization and synchronization schemes.

[1]  Ju H. Park Synchronization of Genesio chaotic system via backstepping approach , 2006 .

[2]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[3]  Suochun Zhang,et al.  Adaptive backstepping synchronization of uncertain chaotic system , 2004 .

[4]  Ju H. Park,et al.  A novel criterion for delayed feedback control of time-delay chaotic systems , 2005 .

[5]  Teh-Lu Liao,et al.  Adaptive synchronization of chaotic systems and its application to secure communications , 2000 .

[6]  K.Murali,et al.  Secure communication using a compound signal from generalized synchronizable chaotic systems , 1997, chao-dyn/9709025.

[7]  Keiji Konishi,et al.  Sliding mode control for a class of chaotic systems , 1998 .

[8]  Morton Nadler,et al.  The stability of motion , 1961 .

[9]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  Bernd Blasius,et al.  Complex dynamics and phase synchronization in spatially extended ecological systems , 1999, Nature.

[11]  M. Feki An adaptive chaos synchronization scheme applied to secure communication , 2003 .

[12]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[13]  Y. Kuramoto,et al.  Dephasing and bursting in coupled neural oscillators. , 1995, Physical review letters.

[14]  Lixin Tian,et al.  Feedback control and adaptive control of the energy resource chaotic system , 2007 .

[15]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[16]  Tao Yang Control of Chaos Using Sampled-Data Feedback Control , 1998 .

[17]  Shuzhi Sam Ge,et al.  Adaptive backstepping Control of a Class of Chaotic Systems , 2000, Int. J. Bifurc. Chaos.

[18]  Dibakar Ghosh,et al.  Projective synchronization of new hyperchaotic system with fully unknown parameters , 2010 .

[19]  M. Lakshmanan,et al.  Chaos in Nonlinear Oscillators: Controlling and Synchronization , 1996 .

[20]  Lixin Tian,et al.  Adaptive Control and Slow Manifold Analysis of a New Chaotic System , 2006 .