Statistical inference to advance network models in epidemiology.

Contact networks are playing an increasingly important role in the study of epidemiology. Most of the existing work in this area has focused on considering the effect of underlying network structure on epidemic dynamics by using tools from probability theory and computer simulation. This work has provided much insight on the role that heterogeneity in host contact patterns plays on infectious disease dynamics. Despite the important understanding afforded by the probability and simulation paradigm, this approach does not directly address important questions about the structure of contact networks such as what is the best network model for a particular mode of disease transmission, how parameter values of a given model should be estimated, or how precisely the data allow us to estimate these parameter values. We argue that these questions are best answered within a statistical framework and discuss the role of statistical inference in estimating contact networks from epidemiological data.

[1]  Stefan Bornholdt,et al.  Dynamics of social networks , 2003, Complex..

[2]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[3]  P. O’Neill,et al.  Bayesian inference for stochastic multitype epidemics in structured populations via random graphs , 2005 .

[4]  M. Kretzschmar,et al.  Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. , 2006, American journal of epidemiology.

[5]  N. Bailey The mathematical theory of epidemics , 1957 .

[6]  Steven M Goodreau Assessing the Effects of Human Mixing Patterns on Human Immunodeficiency Virus-1 Interhost Phylogenetics Through Social Network Simulation , 2006, Genetics.

[7]  M. Hojat,et al.  Protecting adolescents from harm. , 1998, JAMA.

[8]  Gerardo Chowell,et al.  Mathematical and statistical estimation approaches in epidemiology , 2009 .

[9]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[10]  Martina Morris,et al.  Network Epidemiology: A Handbook for Survey Design and Data Collection , 2004 .

[11]  Gaël Thébaud,et al.  Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus , 2008, Proceedings of the Royal Society B: Biological Sciences.

[12]  P. O’Neill,et al.  Bayesian inference for stochastic epidemics in populations with random social structure , 2002 .

[13]  Alessandro Vespignani,et al.  Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks , 2008, PloS one.

[14]  Madhav V. Marathe,et al.  EpiSimdemics: An efficient algorithm for simulating the spread of infectious disease over large realistic social networks , 2008, 2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis.

[15]  Azra C. Ghani,et al.  Measuring sexual partner networks for transmission of sexually transmitted diseases , 1998 .

[16]  Youssef M. Marzouk,et al.  A Bayesian method for inferring transmission chains in a partially observed epidemic. , 2008 .

[17]  G. Roberts,et al.  A novel approach to real-time risk prediction for emerging infectious diseases: a case study in Avian Influenza H5N1. , 2009, Preventive veterinary medicine.

[18]  Tapabrata Maiti,et al.  Bayesian Data Analysis (2nd ed.) (Book) , 2004 .

[19]  Gueorgi Kossinets Effects of missing data in social networks , 2006, Soc. Networks.

[20]  Alexei J. Drummond,et al.  Bayesian Phylogeography Finds Its Roots , 2009, PLoS Comput. Biol..

[21]  N. Ling The Mathematical Theory of Infectious Diseases and its applications , 1978 .

[22]  L. Danon,et al.  Demographic structure and pathogen dynamics on the network of livestock movements in Great Britain , 2006, Proceedings of the Royal Society B: Biological Sciences.

[23]  R. Mikolajczyk,et al.  Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases , 2008, PLoS medicine.

[24]  F. Ball,et al.  Epidemics with two levels of mixing , 1997 .

[25]  Garry Robins,et al.  An introduction to exponential random graph (p*) models for social networks , 2007, Soc. Networks.

[26]  Trish,et al.  Protecting adolescents from harm. Findings from the National Longitudinal Study on Adolescent Health. , 1997, JAMA.

[27]  Gavin J. Gibson,et al.  Bayesian inference for stochastic epidemics in closed populations , 2004 .

[28]  I. Kiss,et al.  The network of sheep movements within Great Britain: network properties and their implications for infectious disease spread , 2006, Journal of The Royal Society Interface.

[29]  L. Meyers,et al.  When individual behaviour matters: homogeneous and network models in epidemiology , 2007, Journal of The Royal Society Interface.

[30]  George Streftaris,et al.  Bayesian analysis of experimental epidemics of foot–and–mouth disease , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  Anna Rosa Garbuglia,et al.  Use of the Minimum Spanning Tree Model for Molecular Epidemiological Investigation of a Nosocomial Outbreak of Hepatitis C Virus Infection , 2004, Journal of Clinical Microbiology.

[32]  J. Hammersley,et al.  Percolation Processes and Related Topics , 1963 .

[33]  Alexander Grey,et al.  The Mathematical Theory of Infectious Diseases and Its Applications , 1977 .

[34]  W. Edmunds,et al.  Dynamic social networks and the implications for the spread of infectious disease , 2008, Journal of The Royal Society Interface.

[35]  A. J. Hall Infectious diseases of humans: R. M. Anderson & R. M. May. Oxford etc.: Oxford University Press, 1991. viii + 757 pp. Price £50. ISBN 0-19-854599-1 , 1992 .

[36]  Neil M Ferguson,et al.  Epidemiological inference for partially observed epidemics: the example of the 2001 foot and mouth epidemic in Great Britain. , 2009, Epidemics.

[37]  G. Gibson Markov Chain Monte Carlo Methods for Fitting Spatiotemporal Stochastic Models in Plant Epidemiology , 1997 .

[38]  W. Edmunds,et al.  Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[39]  L. Prior,et al.  Ecological Models and Data in R , 2011 .

[40]  Madhav V. Marathe,et al.  EpiSimdemics: an efficient algorithm for simulating the spread of infectious disease over large realistic social networks , 2008, HiPC 2008.

[41]  Patrick Doreian,et al.  Introduction to the special issue on network dynamics , 2010, Soc. Networks.

[42]  M. Newman,et al.  Network theory and SARS: predicting outbreak diversity , 2004, Journal of Theoretical Biology.

[43]  D. Hunter,et al.  Bayesian Inference for Contact Networks Given Epidemic Data , 2010 .

[44]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[45]  P Donnelly,et al.  Coalescents and genealogical structure under neutrality. , 1995, Annual review of genetics.

[46]  Menna E. Jones,et al.  Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. , 2009, Ecology letters.

[47]  Francesca Cagnacci,et al.  Comparison of social networks derived from ecological data: implications for inferring infectious disease dynamics. , 2009, The Journal of animal ecology.

[48]  J. Yorke,et al.  Gonorrhea Transmission Dynamics and Control , 1984 .

[49]  A. Ghani,et al.  Risks of Acquiring and Transmitting Sexually Transmitted Diseases in Sexual Partner Networks , 2000, Sexually transmitted diseases.

[50]  A. Nizam,et al.  Containing Bioterrorist Smallpox , 2002, Science.

[51]  Shweta Bansal,et al.  A Comparative Analysis of Influenza Vaccination Programs , 2006, PLoS medicine.

[52]  Shweta Bansal,et al.  The dynamic nature of contact networks in infectious disease epidemiology , 2010, Journal of biological dynamics.

[53]  Ronald S. Burt,et al.  A note on missing network data in the general social survey , 1987 .

[54]  Klaus Dietz,et al.  Epidemics and Rumours: A Survey , 1967 .

[55]  R. Brunham,et al.  Heterosexual outbreak of infectious syphilis: epidemiological and ethnographic analysis and implications for control , 2002, Sexually transmitted infections.

[56]  M. Keeling,et al.  Networks and epidemic models , 2005, Journal of The Royal Society Interface.

[57]  PETER NEAL,et al.  A case study in non-centering for data augmentation: Stochastic epidemics , 2005, Stat. Comput..

[58]  D. Hunter,et al.  Goodness of Fit of Social Network Models , 2008 .

[59]  Mark S Handcock,et al.  MODELING SOCIAL NETWORKS FROM SAMPLED DATA. , 2010, The annals of applied statistics.

[60]  X ZhengAlice,et al.  A Survey of Statistical Network Models , 2010 .

[61]  D. Cummings,et al.  Strategies for containing an emerging influenza pandemic in Southeast Asia , 2005, Nature.

[62]  Béla Bollobás,et al.  Random Graphs , 1985 .

[63]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[64]  Philip D O'Neill,et al.  A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods. , 2002, Mathematical biosciences.

[65]  Aravind Srinivasan,et al.  Modelling disease outbreaks in realistic urban social networks , 2004, Nature.

[66]  Martina Morris,et al.  A statnet Tutorial. , 2008, Journal of statistical software.

[67]  Christl A. Donnelly,et al.  Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain , 2001, Nature.

[68]  Martina Morris,et al.  ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. , 2008, Journal of statistical software.

[69]  Craig Packer,et al.  Distinguishing epidemic waves from disease spillover in a wildlife population , 2009, Proceedings of the Royal Society B: Biological Sciences.

[70]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[71]  Ciro Cattuto,et al.  Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks , 2010, PloS one.

[72]  Andrew Rambaut,et al.  Evolutionary analysis of the dynamics of viral infectious disease , 2009, Nature Reviews Genetics.

[73]  A. Rambaut,et al.  Episodic Sexual Transmission of HIV Revealed by Molecular Phylodynamics , 2008, PLoS medicine.

[74]  Rowland R Kao,et al.  The role of mathematical modelling in the control of the 2001 FMD epidemic in the UK. , 2002, Trends in microbiology.

[75]  Edoardo M. Airoldi,et al.  A Survey of Statistical Network Models , 2009, Found. Trends Mach. Learn..

[76]  Edward C. Holmes,et al.  Discovering the Phylodynamics of RNA Viruses , 2009, PLoS Comput. Biol..

[77]  Alessandro Vespignani,et al.  The role of the airline transportation network in the prediction and predictability of global epidemics , 2006, Proceedings of the National Academy of Sciences of the United States of America.