Selection and stability of wave trains behind predator invasions in a model with non-local prey competition

[1]  H. Engel,et al.  From trigger to phase waves and back again , 2006 .

[2]  Alain Pumir,et al.  The Eckhaus instability for traveling waves , 1992 .

[3]  M A Lewis,et al.  Ecological chaos in the wake of invasion. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Jonathan A. Sherratt,et al.  The effects of unequal diffusion coefficients on periodic travelling waves in oscillatory reaction–diffusion systems , 2007 .

[5]  J. Sherratt,et al.  Locating the transition from periodic oscillations to spatiotemporal chaos in the wake of invasion , 2009, Proceedings of the National Academy of Sciences.

[6]  Arnd Scheel,et al.  Accelerated Fronts in a Two-Stage Invasion Process , 2014, SIAM J. Math. Anal..

[7]  Björn Sandstede,et al.  Computing absolute and essential spectra using continuation , 2007 .

[8]  Jonathan A. Sherratt,et al.  Oscillations and chaos behind predator–prey invasion: mathematical artifact or ecological reality? , 1997 .

[9]  Matthew J. Smith,et al.  Absolute Stability of Wavetrains Can Explain Spatiotemporal Dynamics in Reaction-Diffusion Systems of Lambda-Omega Type , 2009, SIAM J. Appl. Dyn. Syst..

[10]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[11]  Wayne Nagata,et al.  Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition. , 2011, Theoretical population biology.

[12]  Stephen A. Gourley,et al.  A predator-prey reaction-diffusion system with nonlocal effects , 1996 .

[13]  Björn Sandstede,et al.  Absolute and Convective Instabilities of Waves on Unbounded and Large Bounded Domains , 2022 .

[14]  J. Sherratt,et al.  Absolute stability and dynamical stabilisation in predator-prey systems , 2014, Journal of mathematical biology.

[15]  Arnd Scheel,et al.  Triggered Fronts in the Complex Ginzburg Landau Equation , 2013, J. Nonlinear Sci..

[16]  S. Petrovskii,et al.  Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. , 2001, Theoretical population biology.

[17]  W. Saarloos Front propagation into unstable states , 2003, cond-mat/0308540.

[18]  N. Britton Aggregation and the competitive exclusion principle. , 1989, Journal of Theoretical Biology.

[19]  Fluctuations and pattern selection near an Eckhaus instability. , 1993, Physical review letters.

[20]  B. Sandstede,et al.  Chapter 18 - Stability of Travelling Waves , 2002 .

[21]  Alison L. Kay,et al.  On the persistence of spatiotemporal oscillations generated by invasion , 1999 .

[22]  William H. Press,et al.  Numerical Recipes Example Book , 1989 .

[23]  Arnd Scheel,et al.  Spatial Wavenumber Selection in Recurrent Precipitation , 2011, SIAM J. Appl. Dyn. Syst..

[24]  J. Sherratt,et al.  Periodic travelling waves in cyclic populations: field studies and reaction–diffusion models , 2008, Journal of The Royal Society Interface.

[25]  John Billingham,et al.  Dynamics of a strongly nonlocal reaction–diffusion population model , 2004 .

[26]  L. Kramer,et al.  On the Eckhaus instability for spatially periodic patterns , 1985 .

[27]  Nancy Kopell,et al.  Plane Wave Solutions to Reaction‐Diffusion Equations , 1973 .

[28]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[29]  K. Ramachandran,et al.  Mathematical Statistics with Applications. , 1992 .

[30]  J. Sherratt Unstable wavetrains and chaotic wakes in reaction-diffusion systems of l-Ω type , 1995 .

[31]  Arnd Scheel,et al.  Instabilities of Wave Trains and Turing Patterns in Large Domains , 2007, Int. J. Bifurc. Chaos.

[32]  Fordyce A. Davidson,et al.  Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation , 2001 .

[33]  I. Aranson,et al.  The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.

[34]  Jonathan A. Sherratt,et al.  Invading wave fronts and their oscillatory wakes are linked by a modulated travelling phase resetting wave , 1998 .

[35]  Akira Sasaki,et al.  Clumped Distribution by Neighbourhood Competition , 1997 .

[36]  Jonathan A. Sherratt,et al.  Periodic travelling waves in cyclic predator–prey systems , 2001 .

[37]  Alison L. Kay,et al.  Spatial Noise Stabilizes Periodic Wave Patterns in Oscillatory Systems on Finite Domains , 2000, SIAM J. Appl. Math..

[38]  W. Nagata,et al.  Wave train selection behind invasion fronts in reaction–diffusion predator–prey models , 2010 .

[39]  P. C. Hohenberg,et al.  Fronts, pulses, sources and sinks in generalized complex Ginzberg-Landau equations , 1992 .

[40]  P. Ramond Supersymmetry in physics: An algebraic overview , 1985 .