Ecological-niche modeling reveals current opportunities for Agave dryland farming in Sonora, Mexico and Arizona, USA

For centuries, humans occupying arid regions of North America have maintained an intricate relationship with Agave (Agavoideae, Asparagaceae). Today Agave cultivation, primarily for beverage production, provides an economic engine for rural communities throughout Mexico. Among known dryland-farming methods, the use of rock piles and cattle-grazed areas stand out as promising approaches for Agave cultivation. Identifying new cultivation areas to apply these approaches in Arizona, USA and Sonora, Mexico warrants a geographic assessment of areas outside the known ranges of rock piles and grasslands. The objective of this study was to predict areas for dryland-farming of Agave and develop models to identify potential areas for Agave cultivation. We used maximum entropy (MaxEnt) ecological-niche-modeling algorithms to predict suitable areas for Agave dryland farming. The model was parameterized using occurrence records of Hohokam rock piles in Arizona and grassland fields cultivated with Agave in Sonora. Ten environmental-predictor variables were used in the model, downloaded from the WorldClim 2 climate database. The model identified potential locations for using rock piles as dryland-farming methods from south-central Arizona to northwestern Sonora. The Agave-grassland model indicated that regions from central to southern Sonora have the highest potential for cultivation of Agave, particularly for the species Agave angustifolia. Results suggest that there are many suitable areas where rock piles can be used to cultivate Agave in the Sonoran Desert, particularly in the border of southeastern Arizona and northwest Sonora. Likewise, cattle-grazing grasslands provide a viable environment for cultivating Agave in southern Sonora, where the expanding bacanora-beverage industry continues to grow and where different Agave products (e.g., syrups, fructans, saponins, and medicinal compounds) can potentially strengthen local economies.

[1]  R. Mata-González,et al.  Pre-Columbian Rock Mulching as a Strategy for Modern Agave Cultivation in Arid Marginal Lands , 2020, Frontiers in Agronomy.

[2]  J. Fehmi,et al.  Agave palmeri restoration: salvage and transplantation of population structure , 2020 .

[3]  David Rodolfo Domínguez-Arista Bacanora, el mezcal de Sonora: de la clandestinidad a la Denominación de Origen , 2020, Estudios Sociales. Revista de Alimentación Contemporánea y Desarrollo Regional.

[4]  Amadeo M. Rea,et al.  An Aridamerican model for agriculture in a hotter, water scarce world , 2020, PLANTS, PEOPLE, PLANET.

[5]  U. Mueller,et al.  Potential Distribution of Six North American Higher-Attine Fungus-Farming Ant (Hymenoptera: Formicidae) Species , 2019, Journal of insect science.

[6]  A. Búrquez,et al.  Undervalued potential of crassulacean acid metabolism for current and future agricultural production , 2019, Journal of experimental botany.

[7]  Jun Zhuang,et al.  An expert recommendation algorithm based on Pearson correlation coefficient and FP-growth , 2019, Cluster Computing.

[8]  N. Martínez-Tagüeña,et al.  The Role of Future Discounting in Subsistence Decisions: The Case of Hohokam Agave Bajada Cultivation , 2018, Journal of Field Archaeology.

[9]  Wei Wu,et al.  Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China , 2018, Global Ecology and Conservation.

[10]  C. Nóbrega,et al.  Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation , 2018, PloS one.

[11]  A. Salywon,et al.  Hohokam Lost Crop Found: A New Agave (Agavaceae) Species Only Known from Large-scale pre-Columbian Agricultural Fields in Southern Arizona , 2018, Systematic Botany.

[12]  L. Williams,et al.  High‐resolution ecological niche modelling of threatened freshwater mussels in east Texas, USA , 2017 .

[13]  Robert P. Anderson,et al.  Opening the black box: an open-source release of Maxent , 2017 .

[14]  C. D. Lippitt,et al.  A comparison of suitability models to identify prehistoric agricultural fields in western New Mexico , 2017 .

[15]  Emily R. Kuzmick,et al.  Productivity and water use efficiency of Agave americana in the first field trial as bioenergy feedstock on arid lands , 2017 .

[16]  Z. Wen,et al.  Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and cultivation at a global scale , 2016, Scientific Reports.

[17]  James S. Clark,et al.  The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States , 2016, Global change biology.

[18]  Niels Raes,et al.  Minimum required number of specimen records to develop accurate species distribution models , 2016 .

[19]  V. S. Solano La industria del bacanora: historia y tradición de resistencia en la sierra sonorense , 2016 .

[20]  N. Hansen,et al.  Dryland Agriculture in North America , 2016 .

[21]  J. Stewart,et al.  Agave as a model CAM crop system for a warming and drying world , 2015, Front. Plant Sci..

[22]  Xiaohan Yang,et al.  Development and use of bioenergy feedstocks for semi-arid and arid lands. , 2015, Journal of experimental botany.

[23]  J. Mielenz,et al.  Development of Agave as a dedicated biomass source: production of biofuels from whole plants , 2015, Biotechnology for Biofuels.

[24]  S. R. Pandravada,et al.  Mapping the Climate Suitability Using MaxEnt Modeling Approach for Ceylon Spinach (Basella alba L.) Cultivation in India , 2015 .

[25]  Matthew E. Aiello-Lammens,et al.  spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models , 2015 .

[26]  Maggi Kelly,et al.  Fuzzy GIS‐based multi‐criteria evaluation for US Agave production as a bioenergy feedstock , 2015 .

[27]  M. Tarkesh,et al.  Potential habitat modeling for reintroduction of three native plant species in central Iran , 2015, Journal of Arid Land.

[28]  Robert A. Boria,et al.  ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models , 2014 .

[29]  L. Motadi,et al.  Apoptotic potential role of Agave palmeri and Tulbaghia violacea extracts in cervical cancer cells , 2014, Molecular Biology Reports.

[30]  K. Parker,et al.  Genetic and morphological contrasts between wild and anthropogenic populations of Agave parryi var. huachucensis in south-eastern Arizona. , 2014, Annals of botany.

[31]  Robert P. Anderson,et al.  Making better Maxent models of species distributions: complexity, overfitting and evaluation , 2014 .

[32]  Matthew J. Smith,et al.  Protected areas network is not adequate to protect a critically endangered East Africa Chelonian: Modelling distribution of pancake tortoise, Malacochersus tornieri under current and future climates , 2013, bioRxiv.

[33]  J. D. Jesús,et al.  La indicación geográfica tequila. Lecciones de la primera Denominación de Origen mexicana. , 2012 .

[34]  Noemí Bañuelos Flores,et al.  El mezcal en Sonora, México, más que una bebida espirituosa. Etnobotánica de Agave angustifolia Haw , 2012 .

[35]  Dan L Warren,et al.  Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. , 2011, Ecological applications : a publication of the Ecological Society of America.

[36]  Park S. Nobel,et al.  Highlights for Agave Productivity , 2011 .

[37]  Stephen P. Long,et al.  The global potential for Agave as a biofuel feedstock , 2011 .

[38]  Trevor Hastie,et al.  A statistical explanation of MaxEnt for ecologists , 2011 .

[39]  R. Maiti,et al.  Lechuguilla (Agave lecheguilla); an Important Commercial Fiber Plant and a Source of Income to the Arid Land Farmers of Mexico , 2011 .

[40]  Scott L. Collins,et al.  Complex seasonal cycle of ecohydrology in the Southwest United States , 2010 .

[41]  Gideon F. Smith,et al.  Notes on Agave palmeri Engelm. (Agavaceae) and its allies in the Ditepalae , 2010, Bradleya.

[42]  Gary W. Yohe,et al.  Characterizing changes in drought risk for the United States from climate change , 2010 .

[43]  Richard E. Glor,et al.  ENMTools: a toolbox for comparative studies of environmental niche models , 2010 .

[44]  Wenkai Li,et al.  A maximum entropy approach to one-class classification of remote sensing imagery , 2010 .

[45]  Roger A. Baldwin,et al.  Use of Maximum Entropy Modeling in Wildlife Research , 2009, Entropy.

[46]  Howard Griffiths,et al.  Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. , 2009, Journal of experimental botany.

[47]  A. M. Lagarda,et al.  La industria informal del mezcal bacanora , 2009 .

[48]  C. Trueba,et al.  Los destilados de agave en México y su denominación de origen , 2009 .

[49]  A. Zapata,et al.  La expansión tequilera y las mujeres en la industria: del símbolo al testimonio , 2009 .

[50]  Paul B.T. Merani,et al.  Predicting Potential Occurrence and Spread of Invasive Plant Species along the North Platte River, Nebraska , 2008, Invasive Plant Science and Management.

[51]  C. Bahre,et al.  Manufacture of mescal in sonora, Mexico , 1980, Economic Botany.

[52]  E. Félix,et al.  El bacanora: cultivo, regulación y mercados , 2008 .

[53]  A. I. Valenzuela-Quintanar,et al.  INDUSTRIA DEL BACANORA Y SU PROCESO DE ELABORACIÓN BACANORA INDUSTRY AND ITS PROCESS OF PRODUCTION , 2007 .

[54]  R. Seager,et al.  Model Projections of an Imminent Transition to a More Arid Climate in Southwestern North America , 2007, Science.

[55]  Teodoro Cervantes Mendívil,et al.  El cultivo del maguey bacanora (Agave angustifolia Haw.) en la sierra de Sonora , 2007 .

[56]  R. Pearson,et al.  Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar , 2006 .

[57]  P. Nobel,et al.  Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi , 2006 .

[58]  Luis Noriega Production and commercialization of bacanora: An economic opportunity for Sonora, Mexico? , 2004 .

[59]  P. Nobel,et al.  Temperature, water, and PAR influences on predicted and measured productivity of Agave deserti at various elevations , 2004, Oecologia.

[60]  A. Macías El cluster en la industria del tequila en Jalisco, México¹ , 2001 .

[61]  Gary Huckleberry,et al.  Vanishing river: Landscapes and lives of the Lower Verde Valley, the Lower Verde Archaeological Project , 2000 .

[62]  K. R. Adams,et al.  How Does Our Agave Grow? Reproductive Biology of a Suspected Ancient Arizona Cultivar, Agave murpheyi Gibson , 1998 .

[63]  D. Lightfoot The nature, history, and distribution of lithic mulch agriculture : An ancient technique of dryland agriculture , 1996 .

[64]  T. Burwell Bootlegging on a desert mountain: The political ecology of Agave (Agave spp.) demographic change in the Sonora river valley, Sonora, Mexico , 1995 .

[65]  D. Lightfoot MORPHOLOGY AND ECOLOGY OF LITHIC-MULCH AGRICULTURE , 1994 .

[66]  P. Fish,et al.  Prehistoric landscapes of the sonoran desert Hohokam , 1992 .

[67]  Park S. Nobel,et al.  CHANGES IN HYDRAULIC CONDUCTIVITY AND ANATOMY CAUSED BY DRYING AND REWETTING ROOTS OF AGAVE DESERTI (AGAVACEAE) , 1991 .

[68]  Park S. Nobel,et al.  Environmental Biology of Agaves and Cacti , 1988 .

[69]  H. Dobyns Piman Indian Historic Agave Cultivation , 1988 .

[70]  R. Mcdaniel Field Evaluations of Agave in Arizona , 1985 .

[71]  P. Nobel,et al.  Relationships between Photosynthetically Active Radiation, Nocturnal Acid Accumulation, and CO(2) Uptake for a Crassulacean Acid Metabolism Plant, Opuntia ficus-indica. , 1983, Plant physiology.

[72]  W. Masse An Intensive Survey of Prehistoric Dry Farming Systems Near Tumamoc Hill in Tucson, Arizona , 1979 .

[73]  H. S. Gentry,et al.  Agaves of Continental North America. , 1983 .

[74]  P. Minnis,et al.  A Study of the Site Specific Distribution of Agave Parryi in East Central Arizona , 1976 .

[75]  H. S. Gentry,et al.  The Agave Family in Sonora , 1973 .

[76]  G. C. Wilken Microclimate Management by Traditional Farmers , 1972 .

[77]  E. F. Castetter,et al.  The early utilization and the distribution of agave in the American southwest , 1938 .