Persistent NRG1 Type III Overexpression in Spinal Motor Neurons Has No Therapeutic Effect on ALS-Related Pathology in SOD1G93A Mice

[1]  C. Simon,et al.  Boosting neuregulin 1 type-III expression hastens SMA motor axon maturation , 2023, Acta Neuropathologica Communications.

[2]  L. Petrucelli,et al.  Modelling amyotrophic lateral sclerosis in rodents , 2022, Nature Reviews Neuroscience.

[3]  M. Herrando-Grabulosa,et al.  Sigma-1 Receptor is a Pharmacological Target to Promote Neuroprotection in the SOD1G93A ALS Mice , 2021, Frontiers in Pharmacology.

[4]  E. Fedele,et al.  Nearly 30 Years of Animal Models to Study Amyotrophic Lateral Sclerosis: A Historical Overview and Future Perspectives , 2021, International Journal of Molecular Sciences.

[5]  P. van Damme,et al.  Amyotrophic lateral sclerosis: a clinical review , 2020, European journal of neurology.

[6]  X. Navarro,et al.  Gene therapy for overexpressing Neuregulin 1 type I in skeletal muscles promotes functional improvement in the SOD1G93A ALS mice , 2020, Neurobiology of Disease.

[7]  X. Navarro,et al.  Therapeutic Role of Neuregulin 1 Type III in SOD1-Linked Amyotrophic Lateral Sclerosis , 2020, Neurotherapeutics.

[8]  Robert H. Brown,et al.  Endoplasmic reticulum stress leads to accumulation of wild-type SOD1 aggregates associated with sporadic amyotrophic lateral sclerosis , 2018, Proceedings of the National Academy of Sciences.

[9]  Guisen Zhang,et al.  Progressive Degeneration and Inhibition of Peripheral Nerve Regeneration in the SOD1-G93A Mouse Model of Amyotrophic Lateral Sclerosis , 2018, Cellular Physiology and Biochemistry.

[10]  E. Simpson,et al.  Slowing disease progression in the SOD1 mouse model of ALS by blocking neuregulin-induced microglial activation , 2018, Neurobiology of Disease.

[11]  T. Akay,et al.  Cholinergic modulation of motor neurons through the C-boutons are necessary for the locomotor compensation for severe motor neuron loss during amyotrophic lateral sclerosis disease progression , 2019, Behavioural Brain Research.

[12]  L. Piedrafita,et al.  Neuregulin 1-ErbB module in C-bouton synapses on somatic motor neurons: molecular compartmentation and response to peripheral nerve injury , 2017, Scientific Reports.

[13]  H. Kiyama,et al.  Mitochondria‐associated membrane collapse is a common pathomechanism in SIGMAR1‐ and SOD1‐linked ALS , 2016, EMBO molecular medicine.

[14]  P. Horner,et al.  Neuregulin 1 confers neuroprotection in SOD1-linked amyotrophic lateral sclerosis mice via restoration of C-boutons of spinal motor neurons , 2016, Acta neuropathologica communications.

[15]  W. Thompson,et al.  Neuregulin1 displayed on motor axons regulates terminal Schwann cell-mediated synapse elimination at developing neuromuscular junctions , 2016, Proceedings of the National Academy of Sciences.

[16]  J. Cazalets,et al.  Age-Related Changes in Pre- and Postsynaptic Partners of the Cholinergic C-Boutons in Wild-Type and SOD1G93A Lumbar Motoneurons , 2015, PloS one.

[17]  R. Chrast,et al.  Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration. , 2015, Brain : a journal of neurology.

[18]  L. Piedrafita,et al.  Neuregulin‐1 is concentrated in the postsynaptic subsurface cistern of C‐bouton inputs to α‐motoneurons and altered during motoneuron diseases , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[19]  H. Hara,et al.  SA4503, a sigma-1 receptor agonist, suppresses motor neuron damage in in vitro and in vivo amyotrophic lateral sclerosis models , 2014, Neuroscience Letters.

[20]  G. Miles,et al.  Anatomy and function of cholinergic C bouton inputs to motor neurons , 2014, Journal of anatomy.

[21]  Robert H. Brown,et al.  ERBB4 mutations that disrupt the neuregulin-ErbB4 pathway cause amyotrophic lateral sclerosis type 19. , 2013, American journal of human genetics.

[22]  D. A. Bosco,et al.  An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis , 2013, Front. Cell. Neurosci..

[23]  P. Caroni,et al.  Neuroprotection through Excitability and mTOR Required in ALS Motoneurons to Delay Disease and Extend Survival , 2013, Neuron.

[24]  X. Navarro,et al.  Sigma-1R Agonist Improves Motor Function and Motoneuron Survival in ALS Mice , 2012, Neurotherapeutics.

[25]  L. Tönges,et al.  Clinical testing and spinal cord removal in a mouse model for amyotrophic lateral sclerosis (ALS). , 2012, Journal of visualized experiments : JoVE.

[26]  Tobias M. Fischer,et al.  BACE1 Processing of NRG1 Type III Produces a Myelin-Inducing Signal but Is Not Essential for the Stimulation of Myelination , 2011, Glia.

[27]  A. Schneider,et al.  Neurotrophic Growth Factors for the Treatment of Amyotrophic Lateral Sclerosis: Where Do We Stand? , 2010, Front. Neurosci..

[28]  Albert C. Ludolph,et al.  Guidelines for preclinical animal research in ALS/MND: A consensus meeting , 2010, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[29]  A. Pullen,et al.  Increase in presynaptic territory of C‐terminals on lumbar motoneurons of G93A SOD1 mice during disease progression , 2009, The European journal of neuroscience.

[30]  L. Mei,et al.  Neuregulin 1 in neural development, synaptic plasticity and schizophrenia , 2008, Nature Reviews Neuroscience.

[31]  Teruo Hayashi,et al.  Sigma-1 Receptor Chaperones at the ER- Mitochondrion Interface Regulate Ca2+ Signaling and Cell Survival , 2007, Cell.

[32]  Carmen Birchmeier,et al.  Axonal Neuregulin-1 Regulates Myelin Sheath Thickness , 2004, Science.

[33]  J. Glass,et al.  Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man , 2004, Experimental Neurology.

[34]  J. Kong,et al.  Massive Mitochondrial Degeneration in Motor Neurons Triggers the Onset of Amyotrophic Lateral Sclerosis in Mice Expressing a Mutant SOD1 , 1998, The Journal of Neuroscience.

[35]  S. Hirai,et al.  Loss of Cholinergic Synapses on the Spinal Motor Neurons of Amyotrophic Lateral Sclerosis , 1998, Journal of neuropathology and experimental neurology.

[36]  M. Gurney,et al.  Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[38]  G. Fischbach,et al.  Differential expression of ARIA isoforms in the rat brain , 1995, Neuron.