Incomplete Cholesky Factorizations with Limited Memory

We propose an incomplete Cholesky factorization for the solution of large-scale trust region subproblems and positive definite systems of linear equations. This factorization depends on a parameter p that specifies the amount of additional memory (in multiples of n, the dimension of the problem) that is available; there is no need to specify a drop tolerance. Our numerical results show that the number of conjugate gradient iterations and the computing time are reduced dramatically for small values of p. We also show that in contrast with drop tolerance strategies, the new approach is more stable in terms of number of iterations and memory requirements.

[1]  P. Gill,et al.  Practical optimization , 2019 .

[2]  Forum Franco Allemand,et al.  Economic Growth in Europe: Entering a New Era? , 2000 .

[3]  Danny C. Sorensen,et al.  A New Matrix-Free Algorithm for the Large-Scale Trust-Region Subproblem , 2000, SIAM J. Optim..

[4]  S. H. Cheng,et al.  A Modified Cholesky Algorithm Based on a Symmetric Indefinite Factorization , 1998, SIAM J. Matrix Anal. Appl..

[5]  Y. Saad,et al.  Experimental study of ILU preconditioners for indefinite matrices , 1997 .

[6]  M. B. Reed,et al.  ROBUST PRECONDITIONERS FOR LINEAR ELASTICITY FEM ANALYSES , 1997 .

[7]  Franz Rendl,et al.  A semidefinite framework for trust region subproblems with applications to large scale minimization , 1997, Math. Program..

[8]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[9]  Mark T. Jones,et al.  An improved incomplete Cholesky factorization , 1995, TOMS.

[10]  P. Forsyth,et al.  Preconditioned conjugate gradient methods for three-dimensional linear elasticity , 1994 .

[11]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[12]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[13]  Tamar Schlick,et al.  Modified Cholesky Factorizations for Sparse Preconditioners , 1993, SIAM J. Sci. Comput..

[14]  E. D'Azevedo,et al.  Towards a cost-effective ILU preconditioner with high level fill , 1992 .

[15]  Guoliang Xue,et al.  The MINPACK-2 test problem collection , 1992 .

[16]  V. Eijkhout Analysis of parallel incomplete point factorizations , 1991 .

[17]  Ivar Gustafasson A class of precondition conjugate gradient methods applied to finite element equations , 1991 .

[18]  Elizabeth Eskow,et al.  A New Modified Cholesky Factorization , 1990, SIAM J. Sci. Comput..

[19]  I. Duff,et al.  The effect of ordering on preconditioned conjugate gradients , 1989 .

[20]  D. P. Young,et al.  Application of sparse matrix solvers as effective preconditioners , 1989 .

[21]  Mark K. Segar A SLAP for the masses , 1989 .

[22]  J. Ortega Introduction to Parallel and Vector Solution of Linear Systems , 1988, Frontiers of Computer Science.

[23]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[24]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[25]  John G. Lewis,et al.  Sparse matrix test problems , 1982, SGNM.

[26]  J. Meijerink,et al.  Guidelines for the usage of incomplete decompositions in solving sets of linear equations as they occur in practical problems , 1981 .

[27]  N. Munksgaard,et al.  Solving Sparse Symmetric Sets of Linear Equations by Preconditioned Conjugate Gradients , 1980, TOMS.

[28]  T. Manteuffel An incomplete factorization technique for positive definite linear systems , 1980 .

[29]  I. Gustafsson A class of first order factorization methods , 1978 .

[30]  Danny C. Sorensen,et al.  Minimization of a Large-Scale Quadratic FunctionSubject to a Spherical Constraint , 1997, SIAM J. Optim..

[31]  A. Neumaier On satisfying second-order optimality conditions using modified Cholesky factorizations , 1997 .

[32]  I. Hlad ROBUST PRECONDITIONERS FOR LINEAR ELASTICITY FEM ANALYSES , 1997 .

[33]  Anders Forsgren,et al.  Computing Modified Newton Directions Using a Partial Cholesky Factorization , 1995, SIAM J. Sci. Comput..

[34]  David E. Stewart,et al.  Meschach : matrix computations in C , 1994 .

[35]  Michael A. Saunders,et al.  Preconditioners for Indefinite Systems Arising in Optimization , 1992, SIAM J. Matrix Anal. Appl..