Introduction : Overview Acoustic Gas Thermometry ( AGT )

Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA Thermodynamics Division, Istituto Nazionale di Ricerca Metrologica, 10135 Turin, Italy 36 Zunuqua Trail, PO Box 307, Orcas, WA 98280-0307, USA Laboratoire Commun de Métrologie LNE-CNAM (LCM), 61 rue du Landy, 93210 La Plaine Saint-Denis, France National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK National Institute of Metrology, Beijing 100013, China

[1]  J. Mehl Second-order electromagnetic eigenfrequencies of a triaxial ellipsoid , 2015 .

[2]  M. Moldover,et al.  Room temperature acoustic transducers for high-temperature thermometry , 2013 .

[3]  P. Morantz,et al.  Internal consistency in the determination of the Boltzmann constant using a quasispherical resonator , 2013 .

[4]  K. Gillis Second-order boundary corrections to the radial acoustic eigenvalues for a spherical cavity , 2012 .

[5]  K. Szalewicz,et al.  Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium. , 2012, The Journal of chemical physics.

[6]  P. Morantz,et al.  Pyknometric volume measurement of a quasispherical resonator , 2012 .

[7]  Finlay M. Stuart,et al.  New high-precision measurements of the isotopic composition of atmospheric argon , 2011 .

[8]  M. Himbert,et al.  Measurement of the Boltzmann Constant kB Using a Quasi-Spherical Acoustic Resonator , 2011 .

[9]  A. Merlone,et al.  Progress in INRiM Experiment for the Determination of the Boltzmann Constant with a Quasi-spherical Resonator , 2011 .

[10]  K. Szalewicz,et al.  Collision-induced dipole polarizability of helium dimer from explicitly correlated calculations. , 2011, The Journal of chemical physics.

[11]  M. Moldover,et al.  Improved First-Principles Calculation of the Third Virial Coefficient of Helium , 2011, Journal of research of the National Institute of Standards and Technology.

[12]  G. Edwards,et al.  The electromagnetic fields of a triaxial ellipsoid calculated by modal superposition , 2011 .

[13]  Y. Duan,et al.  Progress Toward Redetermining the Boltzmann Constant with a Fixed-Path-Length Cylindrical Resonator , 2011 .

[14]  P. Josephs-Franks,et al.  Outgassing of water vapour, and its significance in experiments to determine the Boltzmann constant , 2011 .

[15]  G. Benedetto,et al.  Shell Perturbations of an Acoustic Thermometer Determined from Speed of Sound in Gas Mixtures , 2010 .

[16]  K. Gillis,et al.  Characterization of Piezoelectric Ceramic Transducer for Accurate Speed-of-Sound Measurement , 2010 .

[17]  G. Sutton,et al.  Waveguide effects on quasispherical microwave cavity resonators , 2010 .

[18]  A. Merlone,et al.  A determination of the Boltzmann constant from speed of sound measurements in helium at a single thermodynamic state , 2010 .

[19]  M. Moldover,et al.  Cylindrical Acoustic Resonator for the Re-determination of the Boltzmann Constant , 2010 .

[20]  M. D. Podesta,et al.  Preparation of argon Primary Measurement Standards for the calibration of ion current ratios measured in argon , 2010 .

[21]  M. Moldover Optimizing acoustic measurements of the Boltzmann constant , 2009 .

[22]  M. Moldover,et al.  Perturbations From Ducts on the Modes of Acoustic Thermometers , 2009, Journal of research of the National Institute of Standards and Technology.

[23]  M. Bruneau,et al.  Characterization of condenser microphones under different environmental conditions for accurate speed of sound measurements with acoustic resonators. , 2009, The Review of scientific instruments.

[24]  B. Podobedov Resistive wall wakefields in the extreme anomalous skin effect regime , 2009 .

[25]  R. Hellmann,et al.  Ab initio pair potential energy curve for the argon atom pair and thermophysical properties for the dilute argon gas. II. Thermophysical properties for low-density argon , 2008 .

[26]  Patrick J. Abbott,et al.  Factors affecting the reproducibility of the accommodation coefficient of the spinning rotor gauge , 2007 .

[27]  M. Moldover,et al.  Acoustic Thermometry Results From 271 K to 552 K | NIST , 2007 .

[28]  Dean C. Ripple,et al.  Acoustic Thermometry Results from 271 to 552 K , 2007 .

[29]  M. Moldover,et al.  Acoustic thermometry: new results from 273 K to 77 K and progress towards 4 K , 2006 .

[30]  M. Moldover,et al.  Quasi-spherical cavity resonators for metrology based on the relative dielectric permittivity of gases , 2004 .

[31]  M. Moldover,et al.  Thermoacoustic boundary layers near the liquid-vapor critical point. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Michael R. Moldover,et al.  Designing quasi-spherical resonators for acoustic thermometry , 2004 .

[33]  Krzysztof Szalewicz,et al.  Radiative corrections to the polarizability of helium. , 2004, Physical review letters.

[34]  A. Merlone,et al.  Acoustic measurements of the thermodynamic temperature between the triple point of mercury and 380 K , 2004 .

[35]  M. Moldover,et al.  Techniques for Primary Acoustic Thermometry to 800 K , 2003 .

[36]  M. Moldover,et al.  Progress in Primary Acoustic Thermometry at NIST: 273 K to 505 K , 2003 .

[37]  Michael R. Moldover,et al.  Dielectric Permittivity of Eight Gases Measured with Cross Capacitors , 2003 .

[38]  H. Koch,et al.  The effect of intermolecular interactions on the electric properties of helium and argon. III. Quantum statistical calculations of the dielectric second virial coefficients , 2002 .

[39]  M. Hamilton,et al.  Linear and nonlinear frequency shifts in acoustical resonators with varying cross sections , 2001 .

[40]  F. Weinhold,et al.  Diamagnetism of helium , 2000 .

[41]  J. Trusler,et al.  Primary acoustic thermometry betweenT = 90 K andT = 300 K , 2000 .

[42]  Roland Span,et al.  A New Equation of State for Argon Covering the Fluid Region for Temperatures From the Melting Line to 700 K at Pressures up to 1000 MPa , 1999 .

[43]  A. Goodwin,et al.  Thermodynamic Temperatures of the Triple Points of Mercury and Gallium and in the Interval 217 K to 303 K , 1999, Journal of Research of the National Institute of Standards and Technology.

[44]  M. Moldover,et al.  Practical determination of gas densities from the speed of sound using square-well potentials , 1996 .

[45]  Davis,et al.  Measurement of the universal gas constant R using a spherical acoustic resonator. , 1987, Physical review letters.

[46]  Mehl,et al.  Measurement of the ratio of the speed of sound to the speed of light. , 1986, Physical review. A, General physics.

[47]  Michael R. Moldover,et al.  Gas‐filled spherical resonators: Theory and experiment , 1986 .

[48]  James B. Mehl,et al.  Spherical acoustic resonator: Effects of shell motion , 1985 .

[49]  M. Moldover,et al.  Precondensation phenomena in acoustic measurements , 1982 .

[50]  T. Quinn,et al.  An acoustic redetermination of the gas constant , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[51]  B. E. Gammon The velocity of sound with derived state properties in helium at −175 to 150 °C with pressure to 150 atm , 1976 .

[52]  Alan B. Coppens,et al.  Finite‐Amplitude Standing Waves in Rigid‐Walled Tubes , 1968 .

[53]  H. Plumb,et al.  Acoustical Thermometer and the National Bureau of Standards Provisional Temperature Scale 2–20 (1965) , 1966 .

[54]  R. G. Meisenheimer,et al.  DIAMAGNETIC SUSCEPTIBILITIES OF SIMPLE HYDROCARBONS AND VOLATILE HYDRIDES , 1960 .

[55]  M. Greenspan Propagation of Sound in Five Monatomic Gases , 1956 .

[56]  P. Morantz,et al.  Assessment of Uncertainty in the Determination of the Boltzmann Constant by an Acoustic Technique , 2011 .

[57]  R. F. Berg,et al.  1 Reference Viscosities of H 2 , CH 4 , Ar and Xe at Low Densities , 2007 .

[58]  Harro A. J. Meijer,et al.  Environmental isotopes in the hydrological cycle: principles and applications , 2001 .

[59]  M. Yovanovich,et al.  Correlation of thermal accommodation coefficient for 'engineering' surfaces , 1987 .

[60]  M. L. Mcglashan,et al.  The Temperature-Jump Effect and the Theory of the Thermal Boundary Layer for a Spherical Resonator. Speeds of Sound in Argon at 273.16K , 1986 .