Deblending and classifying astronomical sources with Mask R-CNN deep learning

We apply a new deep learning technique to detect, classify, and deblend sources in multiband astronomical images. We train and evaluate the performance of an artificial neural network built on the Mask Region-based Convolutional Neural Network image processing framework, a general code for efficient object detection, classification, and instance segmentation. After evaluating the performance of our network against simulated ground truth images for star and galaxy classes, we find a precision of 92 per cent at 80 per cent recall for stars and a precision of 98 per cent at 80 per cent recall for galaxies in a typical field with ∼30 galaxies arcmin−2. We investigate the deblending capability of our code, and find that clean deblends are handled robustly during object masking, even for significantly blended sources. This technique, or extensions using similar network architectures, may be applied to current and future deep imaging surveys such as Large Synoptic Survey Telescope and Wide-Field Infrared Survey Telescope. Our code, astro r-cnn, is publicly available at https://github.com/burke86/astro_rcnn.

[1]  A. Bressan,et al.  PopStar I: evolutionary synthesis model description , 2009, 0905.3664.

[2]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[3]  Fred Moolekamp,et al.  scarlet: Source separation in multi-band images by Constrained Matrix Factorization , 2018, Astron. Comput..

[4]  B. Yanny,et al.  Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey , 2013, 1306.5236.

[5]  S. Andreon,et al.  Wide field imaging – I. Applications of neural networks to object detection and star/galaxy classification , 2000, astro-ph/0006115.

[6]  Adam D. Myers,et al.  Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.

[7]  Yukiko Kamata,et al.  First data release of the Hyper Suprime-Cam Subaru Strategic Program , 2017, 1702.08449.

[8]  A. Szalay,et al.  Preparing Red-Green-Blue (RGB) Images from CCD Data , 2003 .

[9]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[10]  G. Abell,et al.  A Catalog of Rich Clusters of Galaxies , 1989 .

[11]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[12]  R. Laureijs,et al.  Euclid: ESA's mission to map the geometry of the dark universe , 2012, Other Conferences.

[13]  David M. Reiman,et al.  Deblending galaxy superpositions with branched generative adversarial networks , 2018, Monthly Notices of the Royal Astronomical Society.

[14]  R. Kurucz ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. , 1993 .

[15]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[16]  Satoshi Miyazaki,et al.  Characterization and Photometric Performance of the Hyper Suprime-Cam Software Pipeline , 2017, 1705.01599.

[17]  Kai Lars Polsterer,et al.  Photometric redshift estimation via deep learning , 2017, 1706.02467.

[18]  P. Prugniel,et al.  The atmospheric parameters and spectral interpolator for the MILES stars , 2011, 1104.4952.

[19]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[20]  Edinburgh,et al.  Gravitational lens magnification and the mass of abell 1689 , 1998, astro-ph/9801158.

[21]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[22]  Roland S. Zimmermann,et al.  Faster Training of Mask R-CNN by Focusing on Instance Boundaries , 2018, Comput. Vis. Image Underst..

[23]  Measurement of the mass profile of abell 1689 , 1995, astro-ph/9503119.

[24]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Alexey Shvets,et al.  TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation , 2018, Computer-Aided Analysis of Gastrointestinal Videos.

[26]  David W. Hogg,et al.  Preparing Red‐Green‐Blue Images from CCD Data , 2003, astro-ph/0312483.

[27]  Weixing Zhang,et al.  Deep Convolutional Neural Networks for Automated Characterization of Arctic Ice-Wedge Polygons in Very High Spatial Resolution Aerial Imagery , 2018, Remote. Sens..

[28]  J. Anthony Tyson,et al.  THE ELLIPTICITY DISTRIBUTION OF AMBIGUOUSLY BLENDED OBJECTS , 2014, 1406.1506.

[29]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[30]  Costin Grigoras,et al.  Integrating network and transfer metrics to optimize transfer efficiency and experiment workflows , 2015 .

[31]  R. Peletier,et al.  Ages of galaxy bulges and disks from optical and near-infrared colors , 1996, astro-ph/9602088.

[32]  Yongchao Gong,et al.  Mask Scoring R-CNN , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Edward J. Kim,et al.  A Hybrid Ensemble Learning Approach to Star-Galaxy Classification , 2015, 1505.02200.

[34]  W. W. Morgan,et al.  On the Classification of the Forms of Clusters of Galaxies , 1970 .

[35]  Roberto E. Gonz'alez,et al.  Galaxy detection and identification using deep learning and data augmentation , 2018, Astron. Comput..

[36]  Clive G. Page,et al.  Definition of the Flexible Image Transport System (FITS), version 3.0 , 2010 .

[37]  M. Sullivan,et al.  The Dark Energy Survey: Data Release 1 , 2018, The Astrophysical Journal Supplement Series.

[38]  Amy Q. Shen,et al.  Usiigaci: Instance-aware cell tracking in stain-free phase contrast microscopy enabled by machine learning , 2019, bioRxiv.

[39]  R. L. Kurucz,et al.  New Grids of ATLAS9 Model Atmospheres , 2004, astro-ph/0405087.

[40]  Kaiming He,et al.  Mask R-CNN , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[41]  N. Sedaghat,et al.  Gaia DR2 unravels incompleteness of nearby cluster population: new open clusters in the direction of Perseus , 2018, Astronomy & Astrophysics.

[42]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[43]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  J. G. Jernigan,et al.  SIMULATION OF ASTRONOMICAL IMAGES FROM OPTICAL SURVEY TELESCOPES USING A COMPREHENSIVE PHOTON MONTE CARLO APPROACH , 2015, 1504.06570.

[45]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[46]  Peter A. Flach,et al.  Advances in Neural Information Processing Systems 28 , 2015 .

[47]  Yen-Ting Lin,et al.  Second data release of the Hyper Suprime-Cam Subaru Strategic Program , 2019, Publications of the Astronomical Society of Japan.

[48]  M. Graham,et al.  GROWTH on S190426c: Real-time Search for a Counterpart to the Probable Neutron Star–Black Hole Merger using an Automated Difference Imaging Pipeline for DECam , 2019, The Astrophysical Journal.

[49]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[51]  W. L. Sebok,et al.  Optimal classification of images into stars or galaxies - a Bayesian approach. , 1979 .

[52]  J. Frieman,et al.  Star-galaxy classification in the Dark Energy Survey Y1 dataset , 2018, Monthly Notices of the Royal Astronomical Society.

[53]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[54]  Francisco Valdes,et al.  Resolution Classifier , 1982, Astronomical Telescopes and Instrumentation.

[55]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[56]  Shu Liu,et al.  Path Aggregation Network for Instance Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[57]  E. C. Vasconcellos,et al.  DECISION TREE CLASSIFIERS FOR STAR/GALAXY SEPARATION , 2010, 1011.1951.

[58]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[59]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[60]  Ryan Hausen,et al.  Morpheus: A Deep Learning Framework for the Pixel-level Analysis of Astronomical Image Data , 2019, The Astrophysical Journal Supplement Series.

[61]  Nan Li,et al.  Optimizing automatic morphological classification of galaxies with machine learning and deep learning using Dark Energy Survey imaging , 2019, Monthly Notices of the Royal Astronomical Society.

[62]  C. Prieto,et al.  S4N: A spectroscopic survey of stars in the solar neighborhood: The nearest 15 pc , 2004, astro-ph/0403108.

[63]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[64]  Marc Huertas-Company,et al.  Photometry of high-redshift blended galaxies using deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[65]  Yoshua Bengio,et al.  Learning long-term dependencies with gradient descent is difficult , 1994, IEEE Trans. Neural Networks.

[66]  Keming Zhang,et al.  deepCR: Cosmic Ray Rejection with Deep Learning , 2019, J. Open Source Softw..

[67]  Emmanuel Bertin,et al.  Photometric redshifts from SDSS images using a convolutional neural network , 2018, Astronomy & Astrophysics.

[68]  J. Tyson,et al.  Focas: faint object classification and analysis system. , 1981 .

[69]  Yuanyuan Zhang,et al.  Crowded Cluster Cores: An Algorithm for Deblending in Dark Energy Survey Images , 2014, 1409.2885.

[70]  Edward J. Kim,et al.  Star-galaxy Classification Using Deep Convolutional Neural Networks , 2016, ArXiv.

[71]  S. Krughoff,et al.  The effective number density of galaxies for weak lensing measurements in the LSST project , 2013, 1305.0793.

[72]  W. Dawson,et al.  Complementarity of LSST and WFIRST: Regarding Object Blending , 2014 .

[73]  David N. Spergel,et al.  Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data , 2018, Publications of the Astronomical Society of Japan.

[74]  Yong Jae Lee,et al.  YOLACT: Real-Time Instance Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[75]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[76]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.