Specifying label layout style by example

Creating high-quality label layouts in a particular visual style is a time-consuming process. Although automated labeling algorithms can aid the layout process, expert design knowledge is required to tune these algorithms so that they produce layouts which meet the designer's expectations. We propose a system which can learn a labellayout style from a single example layout and then apply this style to new labeling problems. Because designers find it much easier to create example layouts than tune algorithmic parameters, our system provides a more natural workflow for graphic designers. We demonstrate that our system is capable of learning a variety of label layout styles from examples.

[1]  Joe Marks,et al.  An empirical study of algorithms for point-feature label placement , 1995, TOGS.

[2]  Steven K. Feiner,et al.  View management for virtual and augmented reality , 2001, UIST '01.

[3]  Fan Zhang,et al.  Dynamic labeling management in virtual and augmented environments , 2005, Ninth International Conference on Computer Aided Design and Computer Graphics (CAD-CG'05).

[4]  E. Imhof Positioning Names on Maps , 1975 .

[5]  Knut Hartmann,et al.  Label Layout for Interactive 3D Illustrations , 2005, J. WSCG.

[6]  Ioannis G. Tollis,et al.  A unified approach to labeling graphical features , 1998, SCG '98.

[7]  Jean-Daniel Fekete,et al.  Excentric Labeling: Dynamic Neighborhood Labeling for Data Visualization , 2003 .

[8]  Laurie J. Heyer,et al.  Exploring expression data: identification and analysis of coexpressed genes. , 1999, Genome research.

[9]  Chris Stolte,et al.  Rendering effective route maps: improving usability through generalization , 2001, SIGGRAPH.

[10]  C. Karen Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, ACM Trans. Graph..

[11]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[12]  Daphne Koller,et al.  Learning an Agent's Utility Function by Observing Behavior , 2001, ICML.

[13]  Toshiyuki Masui,et al.  Evolutionary learning of graph layout constraints from examples , 1994, UIST '94.

[14]  James Fogarty,et al.  GADGET: a toolkit for optimization-based approaches to interface and display generation , 2003, UIST '03.

[15]  C. K. Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, SIGGRAPH 2005.

[16]  Craig Boutilier,et al.  Constraint-based optimization and utility elicitation using the minimax decision criterion , 2006, Artif. Intell..

[17]  E. Tufte Beautiful Evidence , 2006 .

[18]  Knut Hartmann,et al.  Floating Labels: Applying Dynamic Potential Fields for Label Layout , 2004, Smart Graphics.

[19]  Joe Marks,et al.  A General Cartographic Labeling Algorithm , 1996 .

[20]  Craig Boutilier,et al.  A POMDP formulation of preference elicitation problems , 2002, AAAI/IAAI.

[21]  Fu Jie Huang,et al.  A Tutorial on Energy-Based Learning , 2006 .

[22]  Krzysztof Z. Gajos,et al.  Preference elicitation for interface optimization , 2005, UIST.