Applying MDL to learn best model granularity
暂无分享,去创建一个
Ming Li | Paul M. B. Vitányi | Qiong Gao | P. Vitányi | Ming Li | Qiong Gao
[1] C. S. Wallace,et al. An Information Measure for Classification , 1968, Comput. J..
[2] Ming Li,et al. Minimum description length induction, Bayesianism, and Kolmogorov complexity , 1999, IEEE Trans. Inf. Theory.
[3] Joost N. Kok,et al. Model selection for neural networks: comparing MDL and NIC , 1994, ESANN.
[4] David J. C. MacKay,et al. A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.
[5] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[6] M. Berthod,et al. Automatic recognition of handprinted characters—The state of the art , 1980, Proceedings of the IEEE.
[7] Jorma Rissanen,et al. Universal coding, information, prediction, and estimation , 1984, IEEE Trans. Inf. Theory.
[8] Charles C. Tappert,et al. Cursive Script Recognition by Elastic Matching , 1982, IBM J. Res. Dev..
[9] Ming Li,et al. An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.
[10] A. Kolmogorov. Three approaches to the quantitative definition of information , 1968 .
[11] Ming Li,et al. Inductive Reasoning and Kolmogorov Complexity , 1992, J. Comput. Syst. Sci..
[12] Paul M. B. Vitányi,et al. The miraculous universal distribution , 1997 .
[13] Ray J. Solomonoff,et al. A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..
[14] Ronald L. Rivest,et al. Inferring Decision Trees Using the Minimum Description Length Principle , 1989, Inf. Comput..
[15] C. S. Wallace,et al. Estimation and Inference by Compact Coding , 1987 .
[16] L. M. M.-T.. Theory of Probability , 1929, Nature.
[17] Umesh V. Vazirani,et al. An Introduction to Computational Learning Theory , 1994 .
[18] Jorma Rissanen,et al. The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.
[19] Heekuck Oh,et al. Neural Networks for Pattern Recognition , 1993, Adv. Comput..
[20] Jerome M. Kurtzberg,et al. Feature Analysis for Symbol Recognition by Elastic Matching , 1987, IBM J. Res. Dev..
[21] William I. Gasarch,et al. Book Review: An introduction to Kolmogorov Complexity and its Applications Second Edition, 1997 by Ming Li and Paul Vitanyi (Springer (Graduate Text Series)) , 1997, SIGACT News.
[22] Per Martin-Löf,et al. The Definition of Random Sequences , 1966, Inf. Control..
[23] Nils J. Nilsson,et al. Artificial Intelligence , 1974, IFIP Congress.
[24] J. Rissanen,et al. Modeling By Shortest Data Description* , 1978, Autom..
[25] Ray J. Solomonoff,et al. A Formal Theory of Inductive Inference. Part I , 1964, Inf. Control..
[26] Ray J. Solomonoff,et al. Complexity-based induction systems: Comparisons and convergence theorems , 1978, IEEE Trans. Inf. Theory.
[27] Leslie G. Valiant,et al. A theory of the learnable , 1984, STOC '84.
[28] R. Mises. Grundlagen der Wahrscheinlichkeitsrechnung , 1919 .