Effect of reflected ions on the formation of the structure of interplanetary quasi-perpendicular shocks for Mach numbers lower than the first critical mach number
暂无分享,去创建一个
[1] L. Přech,et al. Fine structure of the interplanetary shock front according to measurements of the ion flux of the solar wind with high time resolution , 2017 .
[2] L. Přech,et al. Fine structure of the interplanetary shock front according to measurements of the ion flux of the solar wind with high time resolution , 2017, Cosmic Research.
[3] L. Přech,et al. Ion scales of quasi‐perpendicular low‐Mach‐number interplanetary shocks , 2013 .
[4] L. Přech,et al. Fast measurements of parameters of the Solar Wind using the BMSW instrument , 2013 .
[5] L. Přech,et al. Fast Solar Wind Monitor (BMSW): Description and First Results , 2013 .
[6] S. Schwartz,et al. The Dynamic Quasiperpendicular Shock: Cluster Discoveries , 2013, 1303.0190.
[7] M. Eselevich,et al. Relations estimated at shock discontinuities excited by coronal mass ejections , 2011 .
[8] C. Russell,et al. Macrostructure of collisionless bow shocks: 1. Scale lengths , 2005 .
[9] V. Formisano,et al. Observation of the terrestrial bow shock in quasi‐electrostatic subshock regime , 2002 .
[10] M. Gedalin,et al. The determination of shock ramp width using the noncoplanar magnetic field component , 1997, physics/9702009.
[11] A. Mavretic,et al. SWE, a comprehensive plasma instrument for the WIND spacecraft , 1995 .
[12] F. Mariani,et al. The WIND magnetic field investigation , 1995 .
[13] C. Russell,et al. Magnetic structure of the low beta, quasi‐perpendicular shock , 1993 .
[14] N. Omidi,et al. Low Mach number parallel and quasi‐parallel shocks , 1990 .
[15] N. Omidi,et al. Steepening of kinetic magnetosonic waves into shocklets: Simulations and consequences for planetary shocks and comets , 1990 .
[16] E. Greenstadt,et al. Plasma wave evidence for reflected ions in front of subcritical shocks: ISEE 1 and 2 observations , 1987 .
[17] C. Kennel,et al. A parametric survey of the first critical Mach number for a fast MHD shock , 1984, Journal of Plasma Physics.
[18] E. Greenstadt,et al. The structure of oblique subcritical bow shocks: ISEE 1 and 2 observations , 1984 .
[19] C. Russell,et al. Evolution of ion distributions across the nearly perpendicular bow shock: Specularly and non‐specularly reflected‐gyrating ions , 1983 .
[20] V. Eselevich. Bow shock structure from laboratory and satellite experimental results , 1983 .
[21] N. Sckopke,et al. Observations of gyrating ions in the foot of the nearly perpendicular bow shock , 1982 .
[22] V. Eselevich. Shock-wave structure in collisionless plasmas from results of laboratory experiments , 1982 .
[23] C. Russell,et al. Structure of the quasi-perpendicular laminar bow shock. [earth-solar wind interaction , 1975 .
[24] W. Feldman,et al. Standing waves at low Mach number laminar bow shocks. [earth-solar wind interaction , 1975 .
[25] C. Conley,et al. On the Structure of Magnetohydrodynamic Shock Waves. , 1974 .
[26] D. Biskamp. Collisionless shock waves in plasmas , 1973 .
[27] T. Northrop,et al. Emission of plasma waves by the Earth's bow shock , 1968 .
[28] Norbert Sckopke,et al. Ion heating at the Earth's quasi-perpendicular bow shock , 1995 .
[29] H. Matsumoto,et al. Test particle simulation study of whistler wave packets observed near comet Giacobini‐Zinner , 1989 .
[30] S. Gary,et al. Whistler damping at oblique propagation: Laminar shock precursors , 1985 .
[31] A. E. Robson,et al. Influence of Reflected Ions on the Magnetic Structure of a Collisionless Shock Front , 1972 .
[32] Derek A. Tidman,et al. Shock waves in collisionless plasmas , 1971 .