Effect of reflected ions on the formation of the structure of interplanetary quasi-perpendicular shocks for Mach numbers lower than the first critical mach number

[1]  L. Přech,et al.  Fine structure of the interplanetary shock front according to measurements of the ion flux of the solar wind with high time resolution , 2017 .

[2]  L. Přech,et al.  Fine structure of the interplanetary shock front according to measurements of the ion flux of the solar wind with high time resolution , 2017, Cosmic Research.

[3]  L. Přech,et al.  Ion scales of quasi‐perpendicular low‐Mach‐number interplanetary shocks , 2013 .

[4]  L. Přech,et al.  Fast measurements of parameters of the Solar Wind using the BMSW instrument , 2013 .

[5]  L. Přech,et al.  Fast Solar Wind Monitor (BMSW): Description and First Results , 2013 .

[6]  S. Schwartz,et al.  The Dynamic Quasiperpendicular Shock: Cluster Discoveries , 2013, 1303.0190.

[7]  M. Eselevich,et al.  Relations estimated at shock discontinuities excited by coronal mass ejections , 2011 .

[8]  C. Russell,et al.  Macrostructure of collisionless bow shocks: 1. Scale lengths , 2005 .

[9]  V. Formisano,et al.  Observation of the terrestrial bow shock in quasi‐electrostatic subshock regime , 2002 .

[10]  M. Gedalin,et al.  The determination of shock ramp width using the noncoplanar magnetic field component , 1997, physics/9702009.

[11]  A. Mavretic,et al.  SWE, a comprehensive plasma instrument for the WIND spacecraft , 1995 .

[12]  F. Mariani,et al.  The WIND magnetic field investigation , 1995 .

[13]  C. Russell,et al.  Magnetic structure of the low beta, quasi‐perpendicular shock , 1993 .

[14]  N. Omidi,et al.  Low Mach number parallel and quasi‐parallel shocks , 1990 .

[15]  N. Omidi,et al.  Steepening of kinetic magnetosonic waves into shocklets: Simulations and consequences for planetary shocks and comets , 1990 .

[16]  E. Greenstadt,et al.  Plasma wave evidence for reflected ions in front of subcritical shocks: ISEE 1 and 2 observations , 1987 .

[17]  C. Kennel,et al.  A parametric survey of the first critical Mach number for a fast MHD shock , 1984, Journal of Plasma Physics.

[18]  E. Greenstadt,et al.  The structure of oblique subcritical bow shocks: ISEE 1 and 2 observations , 1984 .

[19]  C. Russell,et al.  Evolution of ion distributions across the nearly perpendicular bow shock: Specularly and non‐specularly reflected‐gyrating ions , 1983 .

[20]  V. Eselevich Bow shock structure from laboratory and satellite experimental results , 1983 .

[21]  N. Sckopke,et al.  Observations of gyrating ions in the foot of the nearly perpendicular bow shock , 1982 .

[22]  V. Eselevich Shock-wave structure in collisionless plasmas from results of laboratory experiments , 1982 .

[23]  C. Russell,et al.  Structure of the quasi-perpendicular laminar bow shock. [earth-solar wind interaction , 1975 .

[24]  W. Feldman,et al.  Standing waves at low Mach number laminar bow shocks. [earth-solar wind interaction , 1975 .

[25]  C. Conley,et al.  On the Structure of Magnetohydrodynamic Shock Waves. , 1974 .

[26]  D. Biskamp Collisionless shock waves in plasmas , 1973 .

[27]  T. Northrop,et al.  Emission of plasma waves by the Earth's bow shock , 1968 .

[28]  Norbert Sckopke,et al.  Ion heating at the Earth's quasi-perpendicular bow shock , 1995 .

[29]  H. Matsumoto,et al.  Test particle simulation study of whistler wave packets observed near comet Giacobini‐Zinner , 1989 .

[30]  S. Gary,et al.  Whistler damping at oblique propagation: Laminar shock precursors , 1985 .

[31]  A. E. Robson,et al.  Influence of Reflected Ions on the Magnetic Structure of a Collisionless Shock Front , 1972 .

[32]  Derek A. Tidman,et al.  Shock waves in collisionless plasmas , 1971 .