Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies

Current kinetic limitations of carbon anode materials in sodium-ion batteries can be effectively tackled by using tailor-made carbon materials with hierarchical porosity prepared via the nanocasting route. Capacities exceeding 100 mA h g−1 at C/5 are found while exhibiting excellent rate capability and reasonable cycle life.

[1]  R. Holze,et al.  Surface modifications of electrode materials for lithium ion batteries , 2006 .

[2]  Tao Zheng,et al.  Mechanisms for Lithium Insertion in Carbonaceous Materials , 1995, Science.

[3]  D. Stevens,et al.  The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .

[4]  Lipeng Chen,et al.  Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries , 2011 .

[5]  T. Jacobsen,et al.  A rechargeable all-solid-state sodium cell with polymer electrolyte , 1985 .

[6]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[7]  Ricardo Alcántara,et al.  Carbon black: a promising electrode material for sodium-ion batteries , 2001 .

[8]  D. Aurbach,et al.  The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries II . Graphite Electrodes , 1995 .

[9]  P. J. Sebastian,et al.  The preparation of NaV1- xCrxPO4F cathode materials for sodium-ion battery , 2006 .

[10]  Michael Holzapfel,et al.  High Rate Capability of Graphite Negative Electrodes for Lithium-Ion Batteries , 2005 .

[11]  Seung M. Oh,et al.  Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries , 2001 .

[12]  Marca M. Doeff,et al.  Rechargeable Na/Na[sub x]CoO[sub 2] and Na[sub 15]Pb[sub 4]/Na[sub x]CoO[sub 2] polymer electrolyte cells , 1993 .

[13]  Zhenguo Yang,et al.  Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives , 2010 .

[14]  H. Tamon,et al.  Reduction of irreversible capacities of amorphous carbon materials for lithium ion battery anodes by Li2CO3 addition , 2004 .

[15]  J. Rouzaud,et al.  Correlation of the irreversible lithium capacity with the active surface area of modified carbons , 2005 .

[16]  J. Sangster,et al.  C-Na (Carbon-Sodium) System , 2007 .

[17]  Ricardo Alcántara,et al.  Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries , 2005 .

[18]  Tae-Hyun Nam,et al.  The discharge properties of Na/Ni3S2 cell at ambient temperature , 2008 .

[19]  Dawei Liu,et al.  Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation , 2010 .

[20]  Martin Winter,et al.  Ethylene Sulfite as Electrolyte Additive for Lithium‐Ion Cells with Graphitic Anodes , 1999 .

[21]  Sarmimala Hore,et al.  Synthesis of Hierarchically Porous Carbon Monoliths with Highly Ordered Microstructure and Their Application in Rechargeable Lithium Batteries with High‐Rate Capability , 2007 .

[22]  Doron Aurbach,et al.  On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries , 1999 .

[23]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[24]  Denis Billaud,et al.  Electrochemical insertion of sodium into hard carbons , 2002 .

[25]  D. Chung,et al.  Effect of the pitch-based carbon anode on the capacity loss of lithium-ion secondary battery , 2003 .

[26]  Jun-ichi Yamaki,et al.  Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries , 2011 .

[27]  D. Billaud,et al.  Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4–ethylene carbonate electrolyte , 1999 .