Microcoil nuclear magnetic resonance spectroscopy.

In comparison with most analytical chemistry techniques, nuclear magnetic resonance has an intrinsically low sensitivity, and many potential applications are therefore precluded by the limited available quantity of certain types of sample. In recent years, there has been a trend, both commercial and academic, towards miniaturization of the receiver coil in order to increase the mass sensitivity of NMR measurements. These small coils have also proved very useful in coupling NMR detection with commonly used microseparation techniques. A further development enabled by small detectors is parallel data acquisition from many samples simultaneously, made possible by incorporating multiple receiver coils into a single NMR probehead. This review article summarizes recent developments and applications of "microcoil" NMR spectroscopy.

[1]  Luisa Ciobanu,et al.  Measuring reaction kinetics by using multiple microcoil NMR spectroscopy. , 2003, Angewandte Chemie.

[2]  G. Martin,et al.  Comparison of 1.7 mm submicro and 3 mm micro gradient NMR probes for the acquisition of 1H13C and 1H15N heteronuclear shift correlation data , 1999 .

[3]  J. Griffin,et al.  Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies. , 2002, Analytical chemistry.

[4]  B. Behnke,et al.  Capillary HPLC-NMR Coupling:  High-Resolution (1)H NMR Spectroscopy in the Nanoliter Scale. , 1996, Analytical chemistry.

[5]  J. R. Long,et al.  Ultra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory. , 2005, Journal of magnetic resonance.

[6]  Claudio Dalvit,et al.  Multi-selective one dimensional proton NMR experiments for rapid screening and binding affinity measurements. , 2003, Combinatorial chemistry & high throughput screening.

[7]  A. Webb,et al.  RF microcoil design for practical NMR of mass-limited samples. , 1998, Journal of magnetic resonance.

[8]  A. Webb,et al.  Nanoliter-volume 1H NMR detection using periodic stopped-flow capillary electrophoresis. , 1999, Analytical chemistry.

[9]  S. Kan,et al.  Q optimization of RF inductors for use in NMR probes , 1992, Magnetic resonance in medicine.

[10]  Kevin R. Minard,et al.  Solenoidal microcoil design—part II: optimizing winding parameters for maximum signal-to-noise performance , 2001 .

[11]  C. Larive,et al.  Insights into cyclodextrin interactions during sample stacking using capillary isotachophoresis with on‐line microcoil NMR detection , 2005, Magnetic resonance in chemistry : MRC.

[12]  L. Tseng,et al.  On-line coupling of capillary electrochromatography, capillary electrophoresis, and capillary HPLC with nuclear magnetic resonance spectroscopy. , 1998, Analytical chemistry.

[13]  J W Carlson,et al.  Currents and fields of thin conductors in rf saddle coils , 1986, Magnetic resonance in medicine.

[14]  H. Eschrig,et al.  High-field NMR in pulsed magnets. , 2003, Solid state nuclear magnetic resonance.

[15]  D. Raftery,et al.  Analysis of multiple samples using multiplex sample NMR: selective excitation and chemical shift imaging approaches. , 2001, Analytical chemistry.

[16]  L. Tseng,et al.  Application of on-line capillary high-performance liquid chromatography-nuclear magnetic resonance spectrometry coupling for the analysis of vitamin A derivatives , 1996 .

[17]  J. Carolan,et al.  A comparison of inverse-detected heteronuclear NMR performance: conventional vs cryogenic microprobe performance. , 2000, Journal of natural products.

[18]  T. Logan,et al.  Application of a high‐resolution superconducting NMR probe in natural product structure determination , 1999 .

[19]  D. Raftery,et al.  High-throughput nuclear magnetic resonance analysis using a multiple coil flow probe. , 2003, Analytical chemistry.

[20]  A. Webb,et al.  Union of capillary high-performance liquid chromatography and microcoil nuclear magnetic resonance spectroscopy applied to the separation and identification of terpenoids. , 2001, Journal of chromatography. A.

[21]  Jean-Luc Wolfender,et al.  Identification of natural products using HPLC-SPE combined with CapNMR. , 2007, Analytical chemistry.

[22]  A. T. Dossey,et al.  Single insect NMR: A new tool to probe chemical biodiversity. , 2006, ACS chemical biology.

[23]  Jonathan V. Sweedler,et al.  High-Resolution NMR Spectroscopy of Sample Volumes from 1 nL to 10 μL , 1999 .

[24]  J. Sweedler,et al.  Hyphenation of capillary separations with nuclear magnetic resonance spectroscopy. , 2003, Journal of chromatography. A.

[25]  L. Kay,et al.  A Gradient-Enhanced HCCH-TOCSY Experiment for Recording Side-Chain 1H and 13C Correlations in H2O Samples of Proteins , 1993 .

[26]  Andrew G. Webb,et al.  Radiofrequency microcoils in magnetic resonance , 1997 .

[27]  M. V. Shutov,et al.  Development of low field nuclear magnetic resonance microcoils , 2005 .

[28]  P.-A. Besse,et al.  High-Q factor RF planar microcoils for micro-scale NMR spectroscopy , 2002 .

[29]  D L Buckley,et al.  MR microscopy of multicomponent diffusion in single neurons , 2001, Magnetic resonance in medicine.

[30]  Saikat Saha,et al.  Comparison of the performance of round and rectangular wire in small solenoids for high‐field NMR , 2006, Magnetic resonance in chemistry : MRC.

[31]  A. G. Wilson,et al.  Microflow NMR: concepts and capabilities. , 2004, Analytical chemistry.

[32]  Daniel Marek,et al.  High-resolution capillary tube NMR. A miniaturized 5-microL high-sensitivity TXI probe for mass-limited samples, off-line LC NMR, and HT NMR. , 2002, Analytical chemistry.

[33]  C. Larive,et al.  Separation and analysis of nanomole quantities of heparin oligosaccharides using on-line capillary isotachophoresis coupled with NMR detection. , 2005, Analytical chemistry.

[34]  D. Raftery,et al.  NMR probe for the simultaneous acquisition of multiple samples. , 1999, Journal of magnetic resonance.

[35]  Klaus Albert,et al.  Hyphenation of capillary high-performance liquid chromatography to microcoil magnetic resonance spectroscopy--determination of various carotenoids in a small-sized spinach sample. , 2005, Journal of pharmaceutical and biomedical analysis.

[36]  A. Webb,et al.  Signal-to-noise and magnetic susceptibility trade-offs in solenoidal microcoils for NMR. , 1996, Journal of magnetic resonance. Series B.

[37]  Gary E. Martin,et al.  Applications of cryogenic NMR probe technology to long‐range 1H‐15N 2D NMR studies at natural abundance , 2001 .

[38]  C. Rae,et al.  Compartmentation of metabolism probed by [2- 13 C ]alanine: improved 13 C NMR sensitivity using a CryoProbe detects evidence of a glial metabolon , 2003, Neurochemistry International.

[39]  A. Webb,et al.  Multiple solenoidal microcoil probes for high-sensitivity, high-throughput nuclear magnetic resonance spectroscopy. , 1999, Analytical chemistry.

[40]  D. Raftery,et al.  NMR difference probe: a dual-coil probe for NMR difference spectroscopy. , 2002, Journal of magnetic resonance.

[41]  Jing Guo,et al.  Skin-effect resistance of rectangular strips , 1997 .

[42]  P. Hajduk,et al.  High-throughput nuclear magnetic resonance-based screening. , 1999, Journal of medicinal chemistry.

[43]  Scott D. Collins,et al.  A Micromachined Double-Tuned NMR Microprobe , 2003 .

[44]  Y. Nakayama,et al.  New serine protease inhibitors with leukotriene B4 (LTB4) receptor binding affinity. , 1997, Bioorganic & medicinal chemistry.

[45]  Manfred Spraul,et al.  Cryogenically cooled probes—a leap in NMR technology , 2005 .

[46]  P. Goldsbrough,et al.  NMR difference spectroscopy with a dual saddle-coil difference probe , 2004, Analytical and bioanalytical chemistry.

[47]  J. Sweedler,et al.  Chiral separation of nanomole amounts of alprenolol with cITP/NMR , 2004, Analytical and bioanalytical chemistry.

[48]  E. Bayer,et al.  Peer Reviewed: On-Line Coupling of Capillary Separation Techniques with 1H NMR. , 1999, Analytical chemistry.

[49]  C. Griesinger,et al.  Adiabatic TOCSY for C,C and H,H J-transfer , 2000, Journal of biomolecular NMR.

[50]  A. Webb,et al.  Sample concentration and separation for nanoliter-volume NMR spectroscopy using capillary isotachophoresis. , 2001, Journal of the American Chemical Society.

[51]  I. Wilson,et al.  Directly coupled CZE-NMR and CEC-NMR spectroscopy for metabolite analysis: paracetamol metabolites in human urine. , 1998, The Analyst.

[52]  M. O'Neil-Johnson,et al.  High-throughput method for the production and analysis of large natural product libraries for drug discovery. , 2002, Analytical chemistry.

[53]  Arthur S Edison,et al.  Design of small volume HX and triple-resonance probes for improved limits of detection in protein NMR experiments. , 2003, Journal of magnetic resonance.

[54]  Claudio Dalvit,et al.  Fluorine-NMR experiments for high-throughput screening: theoretical aspects, practical considerations, and range of applicability. , 2003, Journal of the American Chemical Society.

[55]  J. Sweedler,et al.  Insights into the cITP process using on-line NMR spectroscopy. , 2002, Analytical chemistry.

[56]  W. Peti,et al.  Biomolecular NMR using a microcoil NMR probe--new technique for the chemical shift assignment of aromatic side chains in proteins. , 2004, Journal of the American Chemical Society.

[57]  K. Albert,et al.  Hyphenation of capillary HPLC to microcoil (1)H NMR spectroscopy for the determination of tocopherol homologues. , 2004, Analytical chemistry.

[58]  A. Webb,et al.  Monitoring temperature changes in capillary electrophoresis with nanoliter-volume NMR thermometry. , 2000, Analytical chemistry.

[59]  L. Tseng,et al.  Gradient elution capillary electrochromatography and hyphenation with nuclear magnetic resonance , 1999, Electrophoresis.

[60]  M. Kushmerick,et al.  Biological applications for small solenoids: NMR spectroscopy of microliter volumes at high fields , 1993, NMR in biomedicine.

[61]  Richard L. Magin,et al.  Nanoliter Volume Sample cells for 1H NMR: Application to Online Detection in Capillary Electrophoresis , 1994 .

[62]  T. Barbara Cylindrical Demagnetization Fields and Microprobe Design in High-Resolution NMR , 1994 .

[63]  G. Martin,et al.  Micro Inverse-Detection: A Powerful Technique for Natural Product Structure Elucidation , 1992 .

[64]  D. M. Ginsberg,et al.  Optimum Geometry of Saddle Shaped Coils for Generating a Uniform Magnetic Field , 1970 .

[65]  A. Wlodawer,et al.  The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix. , 2000 .

[66]  I. Wilson,et al.  On-flow identification of metabolites of paracetamol from human urine using directly coupled CZE–NMR and CEC–NMR spectroscopy , 1998 .

[67]  André Briguet,et al.  Micro-spectrometer for NMR: analysis of small quantities in vitro , 2004 .

[68]  Gary E Martin,et al.  Comparative evaluation of conventional 5 mm inverse and micro inverse detection probes at 500 MHz , 1992 .

[69]  A. Webb,et al.  Design of solenoidal microcoils for high-resolution 13C NMR spectroscopy. , 1998, Analytical chemistry.

[70]  U. Haeberlen,et al.  Design and construction of a high homogeneity rf coil for solid-state multiple-pulse NMR , 1982 .

[71]  A. Webb,et al.  On-line temperature monitoring in a capillary electrochromatography frit using microcoil NMR. , 2002, Analytical chemistry.

[72]  P C Lauterbur,et al.  Design and analysis of microcoils for NMR microscopy. , 1995, Journal of magnetic resonance. Series B.

[73]  T. Barbara,et al.  Target field design for magic angle gradient coils. , 1999, Journal of magnetic resonance.

[74]  A. Webb,et al.  NMR detection with multiple solenoidal microcoils for continuous-flow capillary electrophoresis. , 2002, Analytical chemistry.

[75]  Saikat Saha,et al.  Design, construction, and validation of a 1-mm triple-resonance high-temperature-superconducting probe for NMR. , 2006, Journal of magnetic resonance.

[76]  Luisa Ciobanu,et al.  Reduced data acquisition time in multi-dimensional NMR spectroscopy using multiple-coil probes. , 2005, Journal of magnetic resonance.

[77]  Bowers,et al.  Transformation of symmetrization order to nuclear-spin magnetization by chemical reaction and nuclear magnetic resonance. , 1986, Physical review letters.

[78]  Torsten Herrmann,et al.  NMR for structural proteomics of Thermotoga maritima: Screening and structure determination , 2004, Journal of Structural and Functional Genomics.

[79]  Vincent Malba,et al.  Laser-Lathe Lithography—a Novel Method for Manufacturing Nuclear Magnetic Resonance Microcoils , 2003 .

[80]  Scott D. Collins,et al.  Nuclear magnetic resonance imaging for viscosity measurements of non-Newtonian fluids using a miniaturized RF coil , 2005 .

[81]  G. Whitesides,et al.  Using microcontact printing to fabricate microcoils on capillaries for high resolution proton nuclear magnetic resonance on nanoliter volumes , 1997 .

[82]  A. Webb,et al.  Magnetic resonance microimaging and numerical simulations of velocity fields inside enlarged flow cells used for coupled NMR microseparations. , 2005, Analytical chemistry.

[83]  A. Webb,et al.  Simultaneous NMR microimaging of multiple single-cell samples , 2004 .

[84]  Frank Engelke,et al.  Electromagnetic wave compression and radio frequency homogeneity in NMR solenoidal coils: Computational approach , 2002 .

[85]  A. Forchel,et al.  Fabrication of NMR - Microsensors for nanoliter sample volumes , 2000 .

[86]  High-throughput NMR spectroscopy , 2004, Analytical and bioanalytical chemistry.

[87]  Claudio Dalvit,et al.  NMR screening techniques in drug discovery and drug design , 2002 .

[88]  Kevin R. Minard,et al.  Solonoidal microcoil design: optimizing RF homogeneity and coil dimensions , 2001 .

[89]  A. Webb,et al.  A microcoil NMR probe for coupling microscale HPLC with on-line NMR spectroscopy. , 1999, Analytical chemistry.

[90]  J. Sweedler,et al.  Capillary isotachophoresis/NMR: extension to trace impurity analysis and improved instrumental coupling. , 2002, Analytical Chemistry.

[91]  A. Webb,et al.  An eight-coil high-frequency probehead design for high-throughput nuclear magnetic resonance spectroscopy. , 2004, Journal of magnetic resonance.

[92]  C. Larive,et al.  Separations coupled with NMR detection , 2003 .

[93]  R. Mortishire-Smith,et al.  Metabolic profiling of rodent biological fluids via 1H NMR spectroscopy using a 1 mm microlitre probe. , 2002, The Analyst.

[94]  L. Tseng,et al.  Influence of pressure upon coupling pressurized capillary electrochromatography with nuclear magnetic resonance spectroscopy. , 2001, Analytical chemistry.

[95]  A. Kentgens,et al.  Implementing solenoid microcoils for wide-line solid-state NMR. , 2004, Journal of magnetic resonance.

[96]  K. Farley,et al.  Screening of compound libraries for protein binding using flow-injection nuclear magnetic resonance spectroscopy. , 2001, Methods in enzymology.

[97]  M. Feng,et al.  Nanoliter volume, high-resolution NMR microspectroscopy using a 60-/spl mu/m planar microcoil , 1997, IEEE Transactions on Biomedical Engineering.

[98]  S J Blackband,et al.  NMR spectroscopy of single neurons , 2000, Magnetic resonance in medicine.

[99]  Richard L. Magin,et al.  High-Resolution Microcoil 1H-NMR for Mass-Limited, Nanoliter-Volume Samples , 1995, Science.

[100]  A. Webb,et al.  Rapid Two-Dimensional Inverse Detected Heteronuclear Correlation Experiments with <100 nmol Samples with Solenoidal Microcoil NMR Probes , 1999 .

[101]  A. Webb,et al.  A probe design for the acquisition of homonuclear, heteronuclear, and inverse detected NMR spectra from multiple samples. , 2001, Journal of magnetic resonance.

[102]  L. Tseng,et al.  Direct coupling of capillary electrophoresis and nuclear magnetic resonance spectroscopy for the identification of a dinucleotide , 1999 .

[103]  Paul A. Keifer,et al.  High-Resolution 1H NMR in Solid-Phase Organic Synthesis , 1994 .

[104]  J. Ardenkjær-Larsen,et al.  Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[105]  R. Kirschman,et al.  Potential benefits of a cryogenically cooled NMR probe for room-temperature samples , 1989 .

[106]  J. Sweedler,et al.  1H NMR characterization of the product from single solid-phase resin beads using capillary NMR flow probes. , 2001, Journal of magnetic resonance.

[107]  M. V. Shutov,et al.  Integration of biaxial planar gradient coils and an RF microcoil for NMR flow imaging , 2005 .

[108]  High-resolution, >1 GHz NMR in unstable magnetic fields. , 2000, Physical review letters.

[109]  D. Raftery,et al.  Multiplex sample NMR: an approach to high-throughput NMR using a parallel coil probe , 1999 .

[110]  Richard L. Magin,et al.  Integrating microfabricated fluidic systems and NMR spectroscopy , 2000, IEEE Transactions on Biomedical Engineering.

[111]  N F de Rooij,et al.  Planar microcoil-based microfluidic NMR probes. , 2003, Journal of magnetic resonance.