Recent Advances and Perspectives in Microfluidics‐Based Single‐Cell Biosensing Techniques

Single-cell analyses of secretory proteins are essential to fully understand cellular functional heterogeneity and unravel the underlying mechanisms of intercellular signaling and interactions. Retrieving dynamic information of protein secretion at single-cell resolution reflects the precise, real-time functional states of individual cells in physiological processes. Such measurements remain very challenging in single-cell analysis, which requires highly integrated systems capable of performing on-chip single-cell isolation and subsequent real-time protein detection. Here, recent advances in microfluidics-based single-cell manipulation and emerging approaches for label-free single-cell biosensing are reviewed. The advantages and limitations of these technologies are summarized and challenges to establish the integrated microfluidic biosensing systems for real-time single-cell secretomics are discussed. Recent efforts on integrated platforms for on-chip single-cell protein assays are highlighted and some perspectives on future directions in this field are provided.

[1]  A. Soldatkin,et al.  β-Lactamase label-based potentiometric biosensor for α-2 interferon detection , 1999 .

[2]  Y. Okahata,et al.  A versatile planar QCM-based sensor design for nonlabeling biomolecule detection. , 2002, Analytical chemistry.

[3]  R. Zenobi,et al.  Analytical techniques for single-cell metabolomics: state of the art and trends , 2010, Analytical and bioanalytical chemistry.

[4]  L. G. Leal,et al.  A computer-controlled four-roll mill for investigations of particle and drop dynamics in two-dimensional linear shear flows , 1986, Journal of Fluid Mechanics.

[5]  Yoon-Bo Shim,et al.  A simple and direct electrochemical detection of interferon-gamma using its RNA and DNA aptamers. , 2008, Biosensors & bioelectronics.

[6]  Geoffrey Ingram Taylor,et al.  The formation of emulsions in definable fields of flow , 1934 .

[7]  R G Sweet,et al.  Fluorescence activated cell sorting. , 1972, The Review of scientific instruments.

[8]  D. Chiu,et al.  Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. , 2005, Analytical chemistry.

[9]  Jianping Zhang,et al.  An immunoassay in which magnetic beads act both as collectors and sensitive amplifiers for detecting antigens in a microfluidic chip (MFC)–quartz crystal microbalance (QCM) system , 2011 .

[10]  D. Marshall,et al.  Microfluidics for single cell analysis. , 2012, Current opinion in biotechnology.

[11]  F. Romanato,et al.  A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor. , 2016, Lab on a chip.

[12]  Mohammad A. Qasaimeh,et al.  Particle/cell separation on microfluidic platforms based on centrifugation effect: a review , 2017 .

[13]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[14]  D. Lauffenburger,et al.  Microfluidic Probe for Single-Cell Lysis and Analysis in Adherent Tissue Culture , 2014, Nature Communications.

[15]  K. Lance Kelly,et al.  Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers , 2001 .

[16]  A Kawana,et al.  Selective growth of sensory nerve fibers on metal oxide pattern in culture. , 1990, Brain research. Developmental brain research.

[17]  David Juncker,et al.  Multipurpose microfluidic probe , 2005, Nature materials.

[18]  R. Zenobi,et al.  Mass spectrometric method incorporating enzymatic amplification for attomole-level analysis of target metabolites in biological samples. , 2010, Chemical communications.

[19]  I. Tothill,et al.  Real-time and sensitive detection of Salmonella Typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification. , 2013, Talanta.

[20]  Jungmok You,et al.  A microsystem integrating photodegradable hydrogel microstructures and reconfigurable microfluidics for single-cell analysis and retrieval. , 2015, Lab on a chip.

[21]  S. Quake,et al.  Single-cell genomics , 2011, Nature Methods.

[22]  R. M. Westervelt,et al.  Dielectrophoresis tweezers for single cell manipulation , 2006, Biomedical microdevices.

[23]  J. Edd,et al.  A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics , 2013 .

[24]  A. Ainla,et al.  Lab on a Biomembrane: Rapid prototyping and manipulation of 2D fluidic lipid bilayers circuits , 2013, Scientific Reports.

[25]  Paul E. Sheehan,et al.  Design and Performance of GMR Sensors for the Detection of Magnetic Microbeads in Biosensors , 2003 .

[26]  Christoph A. Merten,et al.  Drop-based microfluidic devices for encapsulation of single cells. , 2008, Lab on a chip.

[27]  Matthias P Lutolf,et al.  Diagnostic microchip to assay 3D colony-growth potential of captured circulating tumor cells. , 2012, Lab on a chip.

[28]  G P Nolan,et al.  Fluorescence-activated cell analysis and sorting of viable mammalian cells based on beta-D-galactosidase activity after transduction of Escherichia coli lacZ. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Dong Sun,et al.  Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. , 2011, Lab on a chip.

[30]  Christoph A. Merten,et al.  Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms. , 2008, Chemistry & biology.

[31]  Daniel F. Hayes,et al.  Sensitive capture of circulating tumour cells by functionalised graphene oxide nanosheets , 2013, Nature nanotechnology.

[32]  Denise A. Martin,et al.  West Nile Virus Recombinant DNA Vaccine Protects Mouse and Horse from Virus Challenge and Expresses In Vitro a Noninfectious Recombinant Antigen That Can Be Used in Enzyme-Linked Immunosorbent Assays , 2001, Journal of Virology.

[33]  Liesbet Lagae,et al.  Localized surface plasmon resonance biosensor integrated with microfluidic chip , 2009, Biomedical microdevices.

[34]  Dinglong Hu,et al.  Deterministic sequential isolation of floating cancer cells under continuous flow. , 2016, Lab on a chip.

[35]  P. Wei,et al.  Label-Free Detection of Rare Cell in Human Blood Using Gold Nano Slit Surface Plasmon Resonance , 2015, Biosensors.

[36]  Mohammadali Safavieh,et al.  Two-Aperture Microfluidic Probes as Flow Dipole: Theory and Applications , 2015, Scientific reports.

[37]  Daniel Isabey,et al.  Assessment of mechanical properties of adherent living cells by bead micromanipulation: comparison of magnetic twisting cytometry vs optical tweezers. , 2002, Journal of biomechanical engineering.

[38]  F. Delvigne,et al.  Microbial heterogeneity affects bioprocess robustness: Dynamic single‐cell analysis contributes to understanding of microbial populations , 2014, Biotechnology journal.

[39]  M. Washizu,et al.  Electrostatic manipulation of DNA in microfabricated structures , 1989, Conference Record of the IEEE Industry Applications Society Annual Meeting,.

[40]  Mattias Goksör,et al.  A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning. , 2010, Lab on a chip.

[41]  Thomas Laurell,et al.  Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays. , 2007, Analytical chemistry.

[42]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[43]  S. Ishii,et al.  Single-cell analysis and isolation for microbiology and biotechnology: methods and applications , 2010, Applied Microbiology and Biotechnology.

[44]  Hugo Ferreira,et al.  Planar Hall effect sensor for magnetic micro- and nanobead detection , 2004 .

[45]  G. van den Engh,et al.  Trapping of DNA by dielectrophoresis , 2002, Electrophoresis.

[46]  Russell H. Cole,et al.  Compact and modular multicolour fluorescence detector for droplet microfluidics. , 2015, Lab on a chip.

[47]  L. Hood,et al.  Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood , 2008, Nature Biotechnology.

[48]  L. Torsi,et al.  Label-free C-reactive protein electronic detection with an electrolyte-gated organic field-effect transistor-based immunosensor , 2016, Analytical and Bioanalytical Chemistry.

[49]  A. Ashkin,et al.  History of optical trapping and manipulation of small-neutral particle, atoms, and molecules , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[50]  R. Tompkins,et al.  Continuous inertial focusing, ordering, and separation of particles in microchannels , 2007, Proceedings of the National Academy of Sciences.

[51]  Rashida Akter,et al.  A highly sensitive quartz crystal microbalance immunosensor based on magnetic bead-supported bienzymes catalyzed mass enhancement strategy. , 2015, Biosensors & bioelectronics.

[52]  M. Toner,et al.  Microengineering of cellular interactions. , 2000, Annual review of biomedical engineering.

[53]  Mehmet E. Solmaz,et al.  Microfluidic bio-particle manipulation for biotechnology , 2014 .

[54]  J. Shay,et al.  Motile behavior and topography of whole and enucleart mammalian cells on modified substrates. , 1977, Experimental cell research.

[55]  F F Becker,et al.  Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. , 1999, Analytical chemistry.

[56]  S. Jahns,et al.  Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection. , 2015, Biomedical optics express.

[57]  Heath A. Huckabay,et al.  Label-free detection of ovarian cancer biomarkers using whispering gallery mode imaging. , 2013, Biosensors & bioelectronics.

[58]  Xiaochun Xu,et al.  Specific Capture and Release of Circulating Tumor Cells Using Aptamer‐Modified Nanosubstrates , 2013, Advanced materials.

[59]  Tushar Patel,et al.  Development of an aptasensor for electrochemical detection of exosomes. , 2016, Methods.

[60]  L. Giavedoni Simultaneous detection of multiple cytokines and chemokines from nonhuman primates using luminex technology. , 2005, Journal of immunological methods.

[61]  Philip Brisk,et al.  Recent developments in microfluidic large scale integration. , 2014, Current opinion in biotechnology.

[62]  George M. Whitesides,et al.  Selective Deposition of Proteins and Cells in Arrays of Microwells , 2001 .

[63]  Wook Ryol Hwang,et al.  Microfluidic assessment of mechanical cell damage by extensional stress. , 2016, Lab on a chip.

[64]  Jianfang Wang,et al.  Shape- and size-dependent refractive index sensitivity of gold nanoparticles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[65]  R. Bashir,et al.  Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes , 2002 .

[66]  S. Muller,et al.  Polymer-monovalent salt-induced DNA compaction studied via single-molecule microfluidic trapping. , 2012, Lab on a chip.

[67]  Mohammad A. Qasaimeh,et al.  Label-free microfluidic stem cell isolation technologies , 2017 .

[68]  Rona S. Gertner,et al.  Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells , 2013, Nature.

[69]  E. Delamarche,et al.  Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe , 2016, Scientific Reports.

[70]  M W Berns,et al.  Micromanipulation of sperm by a laser generated optical trap. , 1989, Fertility and sterility.

[71]  Dieter Braun,et al.  Protein detection by optical shift of a resonant microcavity , 2002 .

[72]  Martin Stutzmann,et al.  Electrolyte-gated organic field-effect transistors for sensing applications , 2011 .

[73]  Ying Liu,et al.  Simultaneous detection of cell-secreted TNF-α and IFN-γ using micropatterned aptamer-modified electrodes. , 2012, Biomaterials.

[74]  D. Ingber,et al.  Mechanotransduction across the cell surface and through the cytoskeleton , 1993 .

[75]  Paul E. Sheehan,et al.  A DNA array sensor utilizing magnetic microbeads and magnetoelectronic detection , 2001 .

[76]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[77]  E. Sackmann,et al.  Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. , 1999, Biophysical journal.

[78]  N. Jaffrezic‐Renault,et al.  Development of novel enzyme potentiometric biosensor based on pH-sensitive field-effect transistors for aflatoxin B1 analysis in real samples. , 2015, Talanta.

[79]  R. Templer,et al.  A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection. , 2011, Lab on a chip.

[80]  Mohammad A. Qasaimeh,et al.  Microfluidic quadrupole and floating concentration gradient , 2011, Nature communications.

[81]  Ayoola T. Brimmo,et al.  Microfluidic Probes and Quadrupoles: A new era of open microfluidics , 2017, IEEE Nanotechnology Magazine.

[82]  Fernando Benito-Lopez,et al.  Microtechnologies for Cell Microenvironment Control and Monitoring , 2017, Micromachines.

[83]  David Erickson,et al.  A multiplexed optofluidic biomolecular sensor for low mass detection. , 2009, Lab on a chip.

[84]  Rostislav Bukasov,et al.  In situ microarray fabrication and analysis using a microfluidic flow cell array integrated with surface plasmon resonance microscopy. , 2009, Analytical chemistry.

[85]  M. Korc,et al.  Label-Free Nanoplasmonic-Based Short Noncoding RNA Sensing at Attomolar Concentrations Allows for Quantitative and Highly Specific Assay of MicroRNA-10b in Biological Fluids and Circulating Exosomes , 2015, ACS nano.

[86]  Michael W. Berns,et al.  OPTICAL TRAPPING AND FLUORESCENCE DETECTION IN LAMINAR-FLOW STREAMS , 1995 .

[87]  David J. Clarke,et al.  Cell manipulation in ultrasonic standing wave fields , 2007 .

[88]  Qiaoqiang Gan,et al.  Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection. , 2013, Lab on a chip.

[89]  R. Sellin,et al.  Dynamical behaviour of drag-reducing polymer solutions☆ , 1979 .

[90]  D. Weitz,et al.  Droplet microfluidics for high-throughput biological assays. , 2012, Lab on a chip.

[91]  H. Duc,et al.  Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141. , 2013, Biosensors & bioelectronics.

[92]  Rebecca Dylla-Spears,et al.  Single-molecule sequence detection via microfluidic planar extensional flow at a stagnation point. , 2010, Lab on a chip.

[93]  Daniel Ahmed,et al.  Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). , 2009, Lab on a chip.

[94]  A. deMello,et al.  Quantitative detection of protein expression in single cells using droplet microfluidics. , 2007, Chemical communications.

[95]  Zimple Matharu,et al.  Liver injury-on-a-chip: microfluidic co-cultures with integrated biosensors for monitoring liver cell signaling during injury. , 2015, Lab on a chip.

[96]  Ernö Pretsch,et al.  Potentiometric biosensing of proteins with ultrasensitive ion-selective microelectrodes and nanoparticle labels. , 2006, Journal of the American Chemical Society.

[97]  Rong Fan,et al.  A Clinical Microchip for Evaluation of Single Immune Cells Reveals High Functional Heterogeneity in Phenotypically Similar T Cells Nih Public Access Author Manuscript Design Rationale and Detection Limit of the Scbc Online Methods Microchip Fabrication On-chip Secretion Profiling Supplementary Mater , 2022 .

[98]  Tae Song Kim,et al.  Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. , 2005, Biosensors & bioelectronics.

[99]  V. Soares,et al.  Flow velocity measurement in microchannels using magnetoresistive chips , 2004, IEEE Transactions on Magnetics.

[100]  G van den Engh,et al.  Trapping of DNA in nonuniform oscillating electric fields. , 1998, Biophysical journal.

[101]  Lingqian Chang,et al.  Magnetic tweezers-based 3D microchannel electroporation for high-throughput gene transfection in living cells. , 2015, Small.

[102]  J. Heyder,et al.  Magnetic phagosome motion in J774A.1 macrophages: influence of cytoskeletal drugs. , 2000, Biophysical journal.

[103]  D. Vizard,et al.  Immunoaffinity purification of FLAG epitope-tagged bacterial alkaline phosphatase using a novel monoclonal antibody and peptide elution. , 1994, BioTechniques.

[104]  Yu Ishige,et al.  A novel enzyme immunoassay based on potentiometric measurement of molecular adsorption events by an extended-gate field-effect transistor sensor. , 2007, Biosensors & bioelectronics.

[105]  Kuo-Kang Liu,et al.  Optical tweezers for single cells , 2008, Journal of The Royal Society Interface.

[106]  Z. Werb,et al.  Circulating Tumor Cells , 2013, Science.

[107]  Ying Liu,et al.  Aptamer-based electrochemical biosensor for interferon gamma detection. , 2010, Analytical chemistry.

[108]  Kathryn M Mayer,et al.  Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates. , 2009, Analytical chemistry.

[109]  S. Jeon,et al.  A rapid and facile signal enhancement method for microcantilever-based immunoassays using the agglomeration of ferromagnetic nanoparticles. , 2012, Chemical communications.

[110]  K. Rajewsky,et al.  Isolation of myeloma variants with predefined variant surface immunoglobulin by cell sorting. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[111]  E. Sackmann,et al.  Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer. , 1994, Biophysical journal.

[112]  J. Kutter,et al.  Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. , 2003, Lab on a chip.

[113]  Douglas A. Lauffenburger,et al.  Polyfunctional responses by human T cells result from sequential release of cytokines , 2011, Proceedings of the National Academy of Sciences.

[114]  Miloslav Pravda,et al.  Direct detection of myoglobin in whole blood using a disposable amperometric immunosensor , 2002 .

[115]  T. Fukuda,et al.  On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel. , 2005, Lab on a chip.

[116]  H Morgan,et al.  Separation of submicron bioparticles by dielectrophoresis. , 1999, Biophysical journal.

[117]  J. Hafner,et al.  A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. , 2008, ACS nano.

[118]  P. Kongsuphol,et al.  EIS-based biosensor for ultra-sensitive detection of TNF-α from non-diluted human serum. , 2014, Biosensors & bioelectronics.

[119]  J. C. Love,et al.  A microengraving method for rapid selection of single cells producing antigen-specific antibodies , 2006, Nature Biotechnology.

[120]  Martin Stelzle,et al.  Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis , 2006, Electrophoresis.

[121]  N. Perrimon,et al.  Droplet microfluidic technology for single-cell high-throughput screening , 2009, Proceedings of the National Academy of Sciences.

[122]  Yi-Kuen Lee,et al.  Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. , 2011, Angewandte Chemie.

[123]  Jianping Fu,et al.  Multiplexed Nanoplasmonic Temporal Profiling of T-Cell Response under Immunomodulatory Agent Exposure , 2016, ACS sensors.

[124]  Mehmet Toner,et al.  Inertial Focusing for Tumor Antigen–Dependent and –Independent Sorting of Rare Circulating Tumor Cells , 2013, Science Translational Medicine.

[125]  L. G. Leal,et al.  An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows , 1986, Journal of Fluid Mechanics.

[126]  Christopher Lausted,et al.  Parallel microfluidic surface plasmon resonance imaging arrays. , 2010, Lab on a chip.

[127]  K. Gruber,et al.  Determination of beta-2 microglobulin levels in plasma using a high-throughput mass spectrometric immunoassay system. , 2001, Analytical chemistry.

[128]  Andrew D Griffiths,et al.  A completely in vitro ultrahigh-throughput droplet-based microfluidic screening system for protein engineering and directed evolution. , 2012, Lab on a chip.

[129]  Hywel Morgan,et al.  Dielectrophoretic trapping of single sub-micrometre scale bioparticles , 1998 .

[130]  Subra Suresh,et al.  Large deformation of living cells using laser traps , 2004 .

[131]  R D Hiebert,et al.  Device which separates minute particles according to electronically sensed volume. , 1969, The Review of scientific instruments.

[132]  Mario Roederer,et al.  Single-cell technologies for monitoring immune systems , 2014, Nature Immunology.

[133]  A. Keller,et al.  Flow‐induced scission of isolated macromolecules , 1988 .

[134]  Wolfgang Wiechert,et al.  Single-cell microfluidics: opportunity for bioprocess development. , 2014, Current opinion in biotechnology.

[135]  Sang Yup Lee,et al.  Aptamer-functionalized localized surface plasmon resonance sensor for the multiplexed detection of different bacterial species. , 2015, Talanta.

[136]  A. Cooke,et al.  Tumour necrosis factor‐alpha and interferon‐gamma production measured at the single cell level in normal and inflamed human intestine , 1990, Clinical and experimental immunology.

[137]  Mehmet Toner,et al.  Design and analysis of extruded quadrupolar dielectrophoretic traps , 2003 .

[138]  G. Fuhr,et al.  Three-dimensional electric field traps for manipulation of cells--calculation and experimental verification. , 1993, Biochimica et biophysica acta.

[139]  Ying Sun,et al.  Design and performances of immunoassay based on SPR biosensor with Au/Ag alloy nanocomposites , 2011 .

[140]  Alar Ainla,et al.  A multifunctional pipette. , 2012, Lab on a chip.

[141]  L. G. Leal,et al.  The stability of two-dimensional linear flows , 1984 .

[142]  Hywel Morgan,et al.  Dielectrophoretic manipulation of rod-shaped viral particles , 1997 .

[143]  Jianping Fu,et al.  Supplementary Information for Multiplex Serum Cytokine Immunoassay Using Nanoplasmonic Biosensor Microarrays , 2015 .

[144]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[145]  Katsuo Kurabayashi,et al.  Nanoimprint-Assisted Shear Exfoliation (NASE) for Producing Multilayer MoS2 Structures as Field-Effect Transistor Channel Arrays. , 2015, ACS nano.

[146]  Yuanjin Zhao,et al.  Aptamer‐Functionalized Barcode Particles for the Capture and Detection of Multiple Types of Circulating Tumor Cells , 2014, Advanced materials.

[147]  M. Rito‐Palomares,et al.  Protein manipulation with insulator-based dielectrophoresis and direct current electric fields. , 2008, Journal of chromatography. A.

[148]  M W Berns,et al.  Micromanipulation of chromosomes in PTK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers). , 1993, Experimental cell research.

[149]  R. Fan,et al.  Nanowire substrate-based laser scanning cytometry for quantitation of circulating tumor cells. , 2012, Nano letters.

[150]  Allen Y. Chen,et al.  Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays. , 2017, Nature nanotechnology.

[151]  T. Laurell,et al.  Review of cell and particle trapping in microfluidic systems. , 2009, Analytica chimica acta.

[152]  Kwang-Seok Yun,et al.  Single-cell manipulation on microfluidic chip by dielectrophoretic actuation and impedance detection , 2010 .

[153]  Monpichar Srisa-Art,et al.  Microdroplets: a sea of applications? , 2008, Lab on a chip.

[154]  H. Berg,et al.  Compliance of bacterial polyhooks measured with optical tweezers. , 1991, Cytometry.

[155]  R. Nelson,et al.  Detection and quantification of beta-2-microglobulin using mass spectrometric immunoassay. , 2001, Analytical biochemistry.

[156]  Paul C. Dastoor,et al.  Organic thin-film transistor (OTFT)-based sensors , 2014 .

[157]  H M Hertz,et al.  Ultrasonic-trap-enhanced selectivity in capillary electrophoresis. , 2003, Ultrasonics.

[158]  A Menachery,et al.  Dielectrophoretic tweezer for isolating and manipulating target cells. , 2011, IET nanobiotechnology.

[159]  V. Ogryzko,et al.  Immunoaffinity purification of mammalian protein complexes. , 2003, Methods in enzymology.

[160]  D. Irvine,et al.  Large area two-dimensional B cell arrays for sensing and cell-sorting applications. , 2004, Biomacromolecules.

[161]  Kak Namkoong,et al.  Surface acoustic wave immunosensor for real-time detection of hepatitis B surface antibodies in whole blood samples. , 2009, Biosensors & bioelectronics.

[162]  S. Quake,et al.  Dynamic pattern formation in a vesicle-generating microfluidic device. , 2001, Physical review letters.

[163]  Hans M. Hertz,et al.  Ultrasonic trapping in capillaries for trace-amount biomedical analysis , 2001 .

[164]  P. Hutchinson,et al.  Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells. , 2008, Human reproduction.

[165]  O. Wolfbeis,et al.  Photonic crystals for chemical sensing and biosensing. , 2014, Angewandte Chemie.

[166]  Emmanuel Delamarche,et al.  Microfluidics in the "open space" for performing localized chemistry on biological interfaces. , 2012, Angewandte Chemie.

[167]  Daniel Ahmed,et al.  Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). , 2008, Lab on a chip.

[168]  Michelle D. Wang,et al.  Stretching DNA with optical tweezers. , 1997, Biophysical journal.

[169]  Amy E Herr,et al.  Profiling protein expression in circulating tumour cells using microfluidic western blotting , 2017, Nature Communications.

[170]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[171]  Elinore M Mercer,et al.  Microfluidic sorting of mammalian cells by optical force switching , 2005, Nature Biotechnology.

[172]  Johannes S Kanger,et al.  UvA-DARE ( Digital Academic Repository ) Micro magnetic tweezers for nanomanipulation inside live cells , 2005 .

[173]  R. Davalos,et al.  An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water. , 2005, Journal of microbiological methods.

[174]  Denise A. Martin,et al.  Standardization of Immunoglobulin M Capture Enzyme-Linked Immunosorbent Assays for Routine Diagnosis of Arboviral Infections , 2000, Journal of Clinical Microbiology.

[175]  Tushar Patel,et al.  Microfluidic compartments with sensing microbeads for dynamic monitoring of cytokine and exosome release from single cells. , 2016, The Analyst.

[176]  Adrian Neild,et al.  Simultaneous positioning of cells into two-dimensional arrays using ultrasound. , 2007, Biotechnology and bioengineering.

[177]  Allon M. Klein,et al.  Single-cell barcoding and sequencing using droplet microfluidics , 2016, Nature Protocols.

[178]  R. Pethig Review article-dielectrophoresis: status of the theory, technology, and applications. , 2010, Biomicrofluidics.

[179]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[180]  M. Tanyeri,et al.  Hydrodynamic trap for single particles and cells. , 2010, Applied physics letters.

[181]  Dino Di Carlo,et al.  Dynamic single-cell analysis for quantitative biology. , 2006, Analytical chemistry.

[182]  James F Rusling,et al.  Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum. , 2011, Biosensors & bioelectronics.

[183]  G. Whitesides,et al.  Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. , 2006, Lab on a chip.

[184]  Thomas Laurell,et al.  Acoustic differential extraction for forensic analysis of sexual assault evidence. , 2009, Analytical chemistry.

[185]  Chaoyong James Yang,et al.  High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. , 2008, Analytical chemistry.

[186]  Dan S. Tawfik,et al.  Man-made cell-like compartments for molecular evolution , 1998, Nature Biotechnology.

[187]  Shinji Katsura,et al.  Development of a new detection method for DNA molecules , 2001 .

[188]  Jianping Fu,et al.  AC Electroosmosis-Enhanced Nanoplasmofluidic Detection of Ultralow-Concentration Cytokine. , 2017, Nano letters.

[189]  L. Terstappen,et al.  Towards the Biological Understanding of CTC: Capture Technologies, Definitions and Potential to Create Metastasis , 2013, Cancers.

[190]  Y. Takamura,et al.  Pulse-heating ionization for protein on-chip mass spectrometry. , 2014, Analytical chemistry.

[191]  S. Anna,et al.  Microfluidic methods for generating continuous droplet streams , 2007 .

[192]  Yiping Chen,et al.  Photonic crystal fiber-based immunosensor for high-performance detection of alpha fetoprotein. , 2017, Biosensors & bioelectronics.

[193]  Richard N. Zare,et al.  Microfluidic device for immunoassays based on surface plasmon resonance imaging. , 2008, Lab on a chip.

[194]  C. Mirkin,et al.  Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. , 2006, Nano letters.

[195]  Robert T Kennedy,et al.  Metabolomic analysis of eukaryotic tissue and prokaryotes using negative mode MALDI time-of-flight mass spectrometry. , 2005, Analytical chemistry.

[196]  Ying Liu,et al.  On-chip regeneration of aptasensors for monitoring cell secretion. , 2014, Lab on a chip.

[197]  M. Dyson,et al.  Flow of Red Blood Cells stopped by Ultrasound , 1971, Nature.

[198]  Reinhard Renneberg,et al.  Enzyme immunosensor for diagnosis of myocardial infarction , 1996 .

[199]  I. Safarik,et al.  Use of magnetic techniques for the isolation of cells. , 1999, Journal of chromatography. B, Biomedical sciences and applications.

[200]  Hans M. Hertz,et al.  Standing-wave Acoustic Trap For Nonintrusive Positioning of Microparticles , 1995 .

[201]  C. Lim,et al.  Isolation and retrieval of circulating tumor cells using centrifugal forces , 2013, Scientific Reports.

[202]  T. Nyström,et al.  A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. , 2007, Lab on a chip.

[203]  David K. Wood,et al.  Single cell trapping and DNA damage analysis using microwell arrays , 2010, Proceedings of the National Academy of Sciences.

[204]  M. Stutzmann,et al.  Biofunctional Electrolyte‐Gated Organic Field‐Effect Transistors , 2012, Advanced materials.

[205]  T. Chao,et al.  Direct detection of peptides and proteins on a microfluidic platform with MALDI mass spectrometry , 2012, Analytical and Bioanalytical Chemistry.

[206]  Helene Andersson-Svahn,et al.  Overview of single-cell analyses: microdevices and applications. , 2010, Lab on a chip.

[207]  Hongxia Chen,et al.  Label-free surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjugation of monodisperse magnetic nanoparticle and folic acid , 2014 .

[208]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[209]  S. Digumarthy,et al.  Isolation of rare circulating tumour cells in cancer patients by microchip technology , 2007, Nature.

[210]  Wei Lu,et al.  Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes. , 2014, Lab on a chip.

[211]  Stephen R Quake,et al.  Whole-genome molecular haplotyping of single cells , 2011, Nature Biotechnology.

[212]  L. Bujanda,et al.  Surface plasmon resonance immunoassay for the detection of the TNFα biomarker in human serum. , 2014, Talanta.

[213]  Kenzo Maehashi,et al.  Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. , 2007, Analytical chemistry.

[214]  Richard P Van Duyne,et al.  A localized surface plasmon resonance imaging instrument for multiplexed biosensing. , 2013, Analytical chemistry.

[215]  J. Bacri,et al.  Interaction of Anionic Superparamagnetic Nanoparticles with Cells: Kinetic Analyses of Membrane Adsorption and Subsequent Internalization , 2002 .

[216]  S. Sim,et al.  Signal enhancement of surface plasmon resonance immunoassay using enzyme precipitation-functionalized gold nanoparticles: a femto molar level measurement of anti-glutamic acid decarboxylase antibody. , 2007, Biosensors & bioelectronics.

[217]  Ronald Pethig,et al.  Selective dielectrophoretic confinement of bioparticles in potential energy wells , 1993 .

[218]  Chao Li,et al.  Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. , 2005, Journal of the American Chemical Society.

[219]  R. Ismagilov,et al.  Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. , 2009, Lab on a chip.

[220]  Hugo Ferreira,et al.  Magnetic field-assisted DNA hybridisation and simultaneous detection using micron-sized spin-valve sensors and magnetic nanoparticles , 2005 .

[221]  Michael Sheetz,et al.  Magnetic tweezers in cell biology. , 2007, Methods in cell biology.

[222]  H. B. Halsall,et al.  Carbohydrate-based label-free detection of Escherichia coli ORN 178 using electrochemical impedance spectroscopy. , 2012, Analytical chemistry.

[223]  W. P. Hall,et al.  A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Assay for Alzheimer's Disease , 2004 .

[224]  Jianding Qiu,et al.  Biocompatible and label-free amperometric immunosensor for hepatitis B surface antigen using a sensing film composed of poly(allylamine)-branched ferrocene and gold nanoparticles , 2011 .

[225]  Karoly Jakab,et al.  Magnetic tweezers for intracellular applications , 2003 .

[226]  H. Stone,et al.  Formation of dispersions using “flow focusing” in microchannels , 2003 .

[227]  Peng Chen,et al.  Versatile immunomagnetic nanocarrier platform for capturing cancer cells. , 2013, ACS nano.

[228]  Hsien-Chang Chang,et al.  A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis. , 2009, Lab on a chip.

[229]  Roman M. Balabin,et al.  Single-cell MALDI-MS as an analytical tool for studying intrapopulation metabolic heterogeneity of unicellular organisms. , 2010, Analytical chemistry.

[230]  A. Khademhosseini,et al.  Microscale technologies for tissue engineering and biology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[231]  T. Lion,et al.  Use of quantitative polymerase chain reaction to monitor residual disease in chronic myelogenous leukemia during treatment with interferon. , 1995, Leukemia.

[232]  Despina Bazou,et al.  Physical enviroment of 2-D animal cell aggregates formed in a short pathlength ultrasound standing wave trap. , 2005, Ultrasound in medicine & biology.

[233]  A. Griffiths,et al.  Droplets as Microreactors for High‐Throughput Biology , 2007, Chembiochem : a European journal of chemical biology.

[234]  I-Kao Chiang,et al.  On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves , 2012, Proceedings of the National Academy of Sciences.

[235]  Rajan P Kulkarni,et al.  Label-Free, Single-Molecule Detection with Optical Microcavities , 2007, Science.

[236]  Nicole Pamme,et al.  Magnetism and microfluidics. , 2006, Lab on a chip.

[237]  D. Weitz,et al.  Single-cell analysis and sorting using droplet-based microfluidics , 2013, Nature Protocols.

[238]  Peter Nordlander,et al.  A single molecule immunoassay by localized surface plasmon resonance , 2010, Nanotechnology.

[239]  Peter Kiesel,et al.  Time encoded multicolor fluorescence detection in a microfluidic flow cytometer. , 2012, Lab on a chip.

[240]  Yasar Gurbuz,et al.  Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays. , 2010, Biosensors & bioelectronics.

[241]  Y. Liu,et al.  Biosensors for Cell Analysis. , 2015, Annual review of biomedical engineering.

[242]  Ernö Pretsch,et al.  Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. , 2008, Analytical chemistry.

[243]  Vittorio Cristini,et al.  Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. , 2004, Lab on a chip.

[244]  E. Sackmann,et al.  Microrheometry underestimates the values of the viscoelastic moduli in measurements on F-actin solutions compared to macrorheometry. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[245]  Nicholas Navin,et al.  Future medical applications of single-cell sequencing in cancer , 2011, Genome Medicine.

[246]  J. Voldman,et al.  A scalable addressable positive-dielectrophoretic cell-sorting array. , 2005, Analytical chemistry.

[247]  Eric Jervis,et al.  High-resolution video monitoring of hematopoietic stem cells cultured in single-cell arrays identifies new features of self-renewal. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[248]  D A Weitz,et al.  Surface acoustic wave actuated cell sorting (SAWACS). , 2010, Lab on a chip.

[249]  Peng Chen,et al.  Nanoelectronic detection of triggered secretion of pro-inflammatory cytokines using CMOS compatible silicon nanowires. , 2011, Biosensors & bioelectronics.

[250]  Chu,et al.  Experimental observation of optically trapped atoms. , 1986, Physical review letters.

[251]  Hugo Ferreira,et al.  Magnetic microbead detection using the planar Hall effect , 2005 .

[252]  D. Weitz,et al.  Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. , 2009, Lab on a chip.

[253]  Klaus Eyer,et al.  A microchamber array for single cell isolation and analysis of intracellular biomolecules. , 2012, Lab on a chip.

[254]  M. Yamada,et al.  Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. , 2005, Lab on a chip.

[255]  Joonhyung Lee,et al.  Sensitive and simultaneous detection of cardiac markers in human serum using surface acoustic wave immunosensor. , 2011, Analytical chemistry.

[256]  Steven M. Block,et al.  Transcription Against an Applied Force , 1995, Science.

[257]  Mehmet Toner,et al.  Biopolymer system for cell recovery from microfluidic cell capture devices. , 2012, Analytical chemistry.

[258]  Jean-Louis Viovy,et al.  Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells , 2008, Proceedings of the National Academy of Sciences.

[259]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[260]  R. G. Sweet High Frequency Recording with Electrostatically Deflected Ink Jets , 1965 .

[261]  S. Smith,et al.  Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. , 1992, Science.

[262]  E. Engvall,et al.  Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. , 1972, Journal of immunology.

[263]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[264]  A. Folch,et al.  Large-scale single-cell trapping and imaging using microwell arrays. , 2005, Analytical chemistry.

[265]  Katsutoshi Takahashi,et al.  MALDI-MS-based high-throughput metabolite analysis for intracellular metabolic dynamics. , 2010, Analytical chemistry.

[266]  Ryan C Bailey,et al.  Rapid, multiparameter profiling of cellular secretion using silicon photonic microring resonator arrays. , 2011, Journal of the American Chemical Society.

[267]  J. Squier,et al.  Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. , 2006, Lab on a chip.

[268]  Daniel Irimia,et al.  Porous microwells for geometry-selective, large-scale microparticle arrays , 2016, Nature materials.

[269]  Alexandre G. Brolo,et al.  Plasmonics for future biosensors , 2012, Nature Photonics.

[270]  Ivan Stojanović,et al.  Quantification of antibody production of individual hybridoma cells by surface plasmon resonance imaging. , 2015, Analytical biochemistry.

[271]  Marcus Textor,et al.  Integration column: microwell arrays for mammalian cell culture. , 2009, Integrative biology : quantitative biosciences from nano to macro.

[272]  Mehmet Toner,et al.  Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass , 2003 .

[273]  D. Kent,et al.  High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays , 2011, Nature Methods.

[274]  J Christopher Love,et al.  Cell-surface sensors for real-time probing of cellular environments. , 2011, Nature nanotechnology.

[275]  Enrico Marani,et al.  Dielectrophoretic trapping of dissociated fetal cortical rat neurons , 2001, IEEE Transactions on Biomedical Engineering.

[276]  Weijia Wen,et al.  Real-time concentration monitoring in microfluidic system via plasmonic nanocrescent arrays. , 2016, Biosensors & bioelectronics.

[277]  Jim Kling,et al.  Beyond counting tumor cells , 2012, Nature Biotechnology.

[278]  Yinian Zhu,et al.  Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor. , 2011, Biosensors & bioelectronics.

[279]  R. Pethig,et al.  Dielectrophoretic detection of membrane morphology changes in Jurkat T-cells undergoing etoposide-induced apoptosis. , 2007, IET nanobiotechnology.

[280]  G. Sauerbrey,et al.  Use of quartz vibration for weighing thin films on a microbalance , 1959 .

[281]  George C. Schatz,et al.  A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles , 2004 .

[282]  T. Logtenberg,et al.  Enumeration of IFN-γ-producing human lymphocytes by spot-ELISA: A method to detect lymphokine-producing lymphocytes at the single-cell level , 1988 .

[283]  Rajan P Kulkarni,et al.  Size-selective collection of circulating tumor cells using Vortex technology. , 2014, Lab on a chip.

[284]  L. G. Mendoza,et al.  High-throughput microarray-based enzyme-linked immunosorbent assay (ELISA). , 1999, BioTechniques.

[285]  Jonas O Tegenfeldt,et al.  Bacterial chromosome extraction and isolation. , 2002, Lab on a chip.

[286]  Miloslav Pravda,et al.  Development of a disposable immunosensor for the detection of human heart fatty-acid binding protein in human whole blood using screen-printed carbon electrodes. , 2002, Talanta.

[287]  A. Ashkin,et al.  Applications of laser radiation pressure. , 1980, Science.

[288]  A. Ashkin,et al.  Internal cell manipulation using infrared laser traps. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[289]  W. R. Dean LXXII. The stream-line motion of fluid in a curved pipe (Second paper) , 1928 .

[290]  S. Arnold,et al.  Whispering-gallery-mode biosensing: label-free detection down to single molecules , 2008, Nature Methods.

[291]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[292]  D E Smith,et al.  Single polymer dynamics in an elongational flow. , 1997, Science.

[293]  Peng Xue,et al.  A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers. , 2014, Biosensors & bioelectronics.

[294]  Che-Hsin Lin,et al.  Microfluidic cell counter/sorter utilizing multiple particle tracing technique and optically switching approach , 2008, Biomedical microdevices.

[295]  Jianzhong Xi,et al.  Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics. , 2012, Lab on a chip.

[296]  Mohammad A. Qasaimeh,et al.  Microfluidic probes for use in life sciences and medicine. , 2013, Lab on a chip.

[297]  S. Carter Haptotactic islands: a method of confining single cells to study individual cell reactions and clone formation. , 1967, Experimental cell research.

[298]  Chunsheng Jiang,et al.  Microfluidics and circulating tumor cells. , 2013, The Journal of molecular diagnostics : JMD.

[299]  D. Grier A revolution in optical manipulation , 2003, Nature.

[300]  Julia N. Kaiser,et al.  Microfluidic-based cell sorting of Francisella tularensis infected macrophages using optical forces. , 2008, Analytical chemistry.

[301]  N. Friedman,et al.  Stochastic protein expression in individual cells at the single molecule level , 2006, Nature.

[302]  R. Aebersold,et al.  Mass Spectrometry and Protein Analysis , 2006, Science.

[303]  D. Weitz,et al.  Geometrically mediated breakup of drops in microfluidic devices. , 2003, Physical review letters.

[304]  N. VASHON BAKER,et al.  Segregation and Sedimentation of Red Blood Cells in Ultrasonic Standing Waves , 1972, Nature.

[305]  J. Uhr,et al.  Challenges in the Enumeration and Phenotyping of CTC , 2012, Clinical Cancer Research.

[306]  P. Kongsuphol,et al.  Detection of tumor necrosis factor (TNF-α) in cell culture medium with label free electrochemical impedance spectroscopy , 2013 .

[307]  Yanxiu Zhou,et al.  A potentiometric protein sensor built with surface molecular imprinting method. , 2008, Biosensors & bioelectronics.

[308]  T. Strick,et al.  Behavior of supercoiled DNA. , 1998, Biophysical journal.

[309]  Peng Li,et al.  Probing circulating tumor cells in microfluidics. , 2013, Lab on a chip.

[310]  Katsuo Kurabayashi,et al.  Label-free cytokine micro- and nano-biosensing towards personalized medicine of systemic inflammatory disorders. , 2015, Advanced drug delivery reviews.

[311]  Nan Wang,et al.  Aptamer-based microcantilever biosensor for ultrasensitive detection of tumor marker nucleolin. , 2016, Talanta.

[312]  Ansgar Huebner,et al.  An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets. , 2009, Lab on a chip.

[313]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[314]  Arthur Ashkin,et al.  Trapping of Atoms by Resonance Radiation Pressure , 1978 .