Kalman filtering and smoothing for linear wave equations with model error
暂无分享,去创建一个
Wonjung Lee | Damon McDougall | A. Stuart | Wonjung Lee | Damon McDougall | Andrew Stuart | D. McDougall
[1] Geir Evensen,et al. The ensemble Kalman filter for combined state and parameter estimation: MONTE CARLO TECHNIQUES FOR DATA ASSIMILATION IN LARGE SYSTEMS , 2009 .
[2] Pravin Varaiya,et al. Stochastic Systems: Estimation, Identification, and Adaptive Control , 1986 .
[3] Andrew J. Majda,et al. Mathematical strategies for filtering turbulent dynamical systems , 2010 .
[4] H. Pikkarainen,et al. State estimation approach to nonstationary inverse problems: discretization error and filtering problem , 2006 .
[5] Andrew J. Majda,et al. Mathematical test criteria for filtering complex systems: Plentiful observations , 2008, J. Comput. Phys..
[6] Jerzy Zabczyk,et al. Stochastic Equations in Infinite Dimensions: Foundations , 1992 .
[7] Andrew J. Majda,et al. Filtering nonlinear dynamical systems with linear stochastic models , 2008 .
[8] A. Bennett,et al. Inverse Modeling of the Ocean and Atmosphere , 2002 .
[9] P. Bickel,et al. Obstacles to High-Dimensional Particle Filtering , 2008 .
[10] Stephen E. Cohn,et al. An Introduction to Estimation Theory (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .
[11] D. Menemenlis. Inverse Modeling of the Ocean and Atmosphere , 2002 .
[12] G. Evensen,et al. Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with , 1996 .
[13] Hemant Ishwaran,et al. IMS Collections Pushing the Limits of Contemporary Statistics : Contributions in Honor of , 2008 .
[14] Nancy Nichols,et al. Adjoint Methods in Data Assimilation for Estimating Model Error , 2000 .
[15] A. Chorin,et al. Implicit sampling for particle filters , 2009, Proceedings of the National Academy of Sciences.
[16] GewekeJohn,et al. Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling , 2001 .
[17] G. Evensen. Data Assimilation: The Ensemble Kalman Filter , 2006 .
[18] P. Bickel,et al. Sharp failure rates for the bootstrap particle filter in high dimensions , 2008, 0805.3287.
[19] B. Anderson,et al. Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.
[20] F. Flandoli,et al. Well-posedness of the transport equation by stochastic perturbation , 2008, 0809.1310.
[21] Andrew J. Majda,et al. Test models for improving filtering with model errors through stochastic parameter estimation , 2010, J. Comput. Phys..
[22] P. Bickel,et al. Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems , 2008, 0805.3034.
[23] A. Neubauer,et al. Convergence results for the Bayesian inversion theory , 2008 .
[24] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[25] James C. Robinson,et al. Bayesian inverse problems for functions and applications to fluid mechanics , 2009 .
[26] Nancy Nichols,et al. Variational data assimilation for parameter estimation: application to a simple morphodynamic model , 2009 .
[27] J. Rosenthal,et al. Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains , 2006, math/0702412.
[28] Van Der Vaart,et al. Rates of contraction of posterior distributions based on Gaussian process priors , 2008 .
[29] Neil J. Gordon,et al. Editors: Sequential Monte Carlo Methods in Practice , 2001 .
[30] Andrew M. Stuart,et al. Data assimilation: Mathematical and statistical perspectives , 2008 .
[31] Arlindo da Silva,et al. Data assimilation in the presence of forecast bias , 1998 .
[32] Nancy Nichols,et al. A hybrid data assimilation scheme for model parameter estimation: Application to morphodynamic modelling , 2011 .
[33] Andrew J Majda,et al. Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems , 2007, Proceedings of the National Academy of Sciences.
[34] Paul Krause,et al. Dimensional reduction for a Bayesian filter. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[35] G. Evensen. Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .
[36] Istvan Szunyogh,et al. Local ensemble Kalman filtering in the presence of model bias , 2006 .
[37] J. Geweke,et al. Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling , 2001 .
[38] Peter Jan,et al. Particle Filtering in Geophysical Systems , 2009 .
[39] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[40] Eugenia Kalnay,et al. Atmospheric Modeling, Data Assimilation and Predictability , 2002 .
[41] S. Cohn,et al. An Introduction to Estimation Theory , 1997 .
[42] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .