Coordination number in liquid argon

Structure of liquids is discussed in terms of Voronoi figures and Delaunay polyhedra. Equations of the respective models and precise experimental data recently available for argon lead to calculated values of the coordination number z and the geometric parameter μ. The relation between z and μ is thus found empirically. Further, calculated values of coordination numbers are compared with those coming from thermal-neutron and X-ray scattering data. A selection among the existing methods of obtaining z from the radial distribution function g(R) is made. The method chosen enables one to find z[g(R)] corresponding to the Voronoi structure.

[1]  B. Smith,et al.  An analysis of the equilibrium vapour pressure of some simple liquids , 1967 .

[2]  A. E. Grosser,et al.  Intermolecular potential for Ar+NH 3 from differential cross sections , 1974 .

[3]  R. Kaplow,et al.  Radial Density Functions for Liquid Mercury and Lead , 1965 .

[4]  S. Franchetti On a model for monoatomic liquids , 1968 .

[5]  C. J. Pings,et al.  Structure of Liquids. III. An X‐Ray Diffraction Study of Fluid Argon , 1967 .

[6]  S. Franchetti Next-neighbour distributions in simple liquids , 1972 .

[7]  C. Gladun The specific heat of liquid argon , 1971 .

[8]  I. Prigogine,et al.  The molecular theory of solutions , 1957 .

[9]  J. A. Barker,et al.  Liquid argon: Monte carlo and molecular dynamics calculations , 1971 .

[10]  G. Thodos,et al.  Saturated Liquid Densities of Cryogenic Fluids , 1971 .

[11]  W. Streett,et al.  Measurements of the velocity of sound in liquid argon from 90 to 160 K and pressures to 3400 atm , 1974 .

[12]  Roy Kaplow,et al.  Atomic Arrangement in Vitreous Selenium , 1968 .

[13]  C. A. Rogers,et al.  Packing and Covering , 1964 .

[14]  D. Patterson,et al.  Corresponding states theories and liquid models , 1970 .

[15]  C. J. Pings,et al.  The Use of the Coordination Number in the Interpretation of Fluid Structure , 1968 .

[16]  J. Thoen,et al.  Sound velocity measurements in liquid argon as a function of pressure and temperature , 1969 .

[17]  W. Streett Thermodynamic properties of liquid argon at high pressures, calculated from PVT and sound-velocity data , 1974 .

[18]  M. Madan Grüneisen parameter for the equation of state of alkali halides , 1971 .

[19]  H. H. Chen,et al.  On the Vapor Pressure of Solid Argon , 1971 .

[20]  O. Verbeke An equation for the vapour pressure curve , 1970 .

[21]  W. Steele,et al.  Critical Properties of Argon , 1968 .

[22]  J. Fischer,et al.  Correlation of Molecular Motions from the Point of View of the Cell Model , 1970 .

[23]  N. S. Gingrich,et al.  The Diffraction of X-Rays by Argon in the Liquid, Vapor, and Critical Regions , 1942 .

[24]  M. L. Mcglashan Effective pair interaction energy in crystalline argon , 1965 .

[25]  C. J. Pings,et al.  Experimental study of the shape of the coexistence curve of argon near the critical state , 1968 .

[26]  K. Goldman,et al.  Densities of saturated liquid argon , 1969 .

[27]  C. J. Pings,et al.  Refractive Index and the Lorentz–Lorenz Function for Gaseous and Liquid Argon, Including a Study of the Coexistence Curve near the Critical State , 1968 .

[28]  D. Henshaw Atomic Distribution in Liquid Argon by Neutron Diffraction and the Cross Sections of A 36 and A 40 , 1957 .

[29]  E. A. Guggenheim Applications of Statistical Mechanics , 1966 .

[30]  J. Bae A simple intermolecular potential energy function for nonpolar molecules , 1969 .

[31]  W. Brostow,et al.  Some properties of the informational model of the liquid state , 1973 .

[32]  R. G. Wenzel,et al.  Structure Factor and Radial Distribution Function for Liquid Argon at 85 °K , 1973 .