A deterministic polynomial kernel for Odd Cycle Transversal and Vertex Multiway Cut in planar graphs

We show that Odd Cycle Transversal and Vertex Multiway Cut admit deterministic polynomial kernels when restricted to planar graphs and parameterized by the solution size. This answers a question of Saurabh. On the way to these results, we provide an efficient sparsification routine in the flavor of the sparsification routine used for the Steiner Tree problem in planar graphs (FOCS 2014). It differs from the previous work because it preserves the existence of low-cost subgraphs that are not necessarily Steiner trees in the original plane graph, but structures that turn into (supergraphs of) Steiner trees after adding all edges between pairs of vertices that lie on a common face. We also show connections between Vertex Multiway Cut and the Vertex Planarization problem, where the existence of a polynomial kernel remains an important open problem.

[1]  Saket Saurabh,et al.  A Near-Optimal Planarization Algorithm , 2014, SODA.

[2]  Bart M. P. Jansen Polynomial Kernels for Hard Problems on Disk Graphs , 2010, SWAT.

[3]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[4]  David Eisenstat,et al.  Linear-time algorithms for max flow and multiple-source shortest paths in unit-weight planar graphs , 2013, STOC '13.

[5]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[6]  Ken-ichi Kawarabayashi,et al.  Planarity Allowing Few Error Vertices in Linear Time , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[7]  Ondrej Suchý Extending the Kernel for Planar Steiner Tree to the Number of Steiner Vertices , 2016, Algorithmica.

[8]  Andrew Drucker,et al.  New Limits to Classical and Quantum Instance Compression , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[9]  Mihalis Yannakakis,et al.  Multiway cuts in node weighted graphs , 2004, J. Algorithms.

[10]  Igor Razgon Large Isolating Cuts Shrink the Multiway Cut , 2011, ArXiv.

[11]  Fedor V. Fomin,et al.  Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[12]  Ondrej Suchý Extending the Kernel for Planar Steiner Tree to the Number of Steiner Vertices , 2015, IPEC.

[13]  Dimitrios M. Thilikos,et al.  Bidimensionality and kernels , 2010, SODA '10.

[14]  Saket Saurabh,et al.  Uniform Kernelization Complexity of Hitting Forbidden Minors , 2015, ICALP.

[15]  Saket Saurabh,et al.  Kernelization - Preprocessing with a Guarantee , 2012, The Multivariate Algorithmic Revolution and Beyond.

[16]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[17]  Sylvain Guillemot,et al.  FPT algorithms for path-transversal and cycle-transversal problems , 2011, Discret. Optim..

[18]  Saket Saurabh,et al.  Subexponential Parameterized Odd Cycle Transversal on Planar Graphs , 2012, FSTTCS.

[19]  Bruce A. Reed,et al.  Planar graph bipartization in linear time , 2005, Discret. Appl. Math..

[20]  Anders Yeo,et al.  Kernel bounds for disjoint cycles and disjoint paths , 2009, Theor. Comput. Sci..

[21]  Dániel Marx,et al.  Obtaining a Planar Graph by Vertex Deletion , 2007, Algorithmica.

[22]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[23]  Stefan Kratsch,et al.  Representative Sets and Irrelevant Vertices: New Tools for Kernelization , 2011, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[24]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[25]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[26]  Stefan Kratsch,et al.  Representative Sets and Irrelevant Vertices , 2020, J. ACM.

[27]  Erik Jan van Leeuwen,et al.  Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[28]  Michal Pilipczuk,et al.  On Multiway Cut Parameterized above Lower Bounds , 2011, IPEC.

[29]  Siam J. CoMPtrr,et al.  FINDING A MAXIMUM CUT OF A PLANAR GRAPH IN POLYNOMIAL TIME * , 2022 .

[30]  Clyde L. Monma,et al.  Send-and-Split Method for Minimum-Concave-Cost Network Flows , 1987, Math. Oper. Res..

[31]  Stefan Kratsch,et al.  Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal , 2011, TALG.