On regularity for an Ericksen‐Leslie's parabolic‐hyperbolic liquid crystals model

[1]  Ning Jiang,et al.  On well-posedness of Ericksen–Leslie’s parabolic–hyperbolic liquid crystal model in compressible flow , 2017, Mathematical Models and Methods in Applied Sciences.

[2]  Jishan Fan,et al.  Uniform local well-posedness for an Ericksen-Leslie's density-dependent parabolic-hyperbolic liquid crystals model , 2017, Appl. Math. Lett..

[4]  Jishan Fan,et al.  Regularity criterion for the wave map in a bounded domain , 2017, Appl. Math. Lett..

[5]  Arghir Zarnescu,et al.  Global well-posedness and twist-wave solutions for the inertial Qian-Sheng model of liquid crystals , 2016, 1608.08872.

[6]  E. Feireisl,et al.  On a hyperbolic system arising in liquid crystals modeling , 2016, 1610.07828.

[7]  S. Ding,et al.  Asymptotics for the Time Dependent Ginzburg–Landau Equations , 1999 .

[8]  GROUND STATE SOLUTIONS FOR CHOQUARD TYPE EQUATIONS WITH A SINGULAR POTENTIAL , 2017 .

[9]  J. Ericksen Liquid crystals with variable degree of orientation , 1991 .

[10]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[11]  Binlin Zhang,et al.  Weak solutions for parabolic equations with p(x)-growth , 2016 .

[12]  J. Shatah,et al.  Geometric wave equations , 1998 .

[13]  Yong Zhou,et al.  REGULARITY CRITERIA FOR THE WAVE MAP AND RELATED SYSTEMS , 2016 .

[14]  J. Fan,et al.  Large-time behavior of liquid crystal flows with a trigonometric condition in two dimensions , 2015 .

[15]  J. Ericksen Conservation Laws for Liquid Crystals , 1961 .

[16]  Takayoshi Ogawa,et al.  The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations , 2002 .