Imaging in Randomly Layered Media by Cross-Correlating Noisy Signals

We consider an active source embedded in a randomly layered medium. We study the cross-correlation functions of the signals recorded at a series of points located at the surface. We show that this information can be processed to locate and identify the source inside the medium. The analysis is based on a separation of scales technique and limit theorems for random differential equations. The statistical stability of the imaging method is proved. The analogy with the time reversal of waves is enlightened, but the main difference is also put forward: we propose a passive way of imaging an unknown medium without the use of any active device. Finally, we extend these ideas for the location of a scatterer illuminated by a controlled source located at the surface or by a set of unknown sources generating random noise.

[1]  J. Harvey,et al.  Time–distance helioseismology , 1993, Nature.

[2]  Hongkai Zhao,et al.  Super-resolution in time-reversal acoustics. , 2002, The Journal of the Acoustical Society of America.

[3]  Mathias Fink,et al.  Green's function estimation using secondary sources in a shallow water environment. , 2003, The Journal of the Acoustical Society of America.

[4]  Jean-Pierre Fouque,et al.  A time-reversal method for an acoustical pulse propagating in randomly layered media , 1997 .

[5]  Peter Gerstoft,et al.  Inversion of acoustic data using a combination of genetic algorithms and the Gauss–Newton approach , 1995 .

[6]  George Papanicolaou,et al.  Ray theory for a locally layered random medium , 2000 .

[7]  Josselin Garnier,et al.  Time-reversal refocusing for point source in randomly layered media , 2005 .

[8]  Peter Gerstoft,et al.  Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions , 1994 .

[9]  Roel Snieder,et al.  Imaging and Averaging in Complex Media , 1999 .

[10]  R. Burridge,et al.  The accuracy of the O'Doherty-Anstey approximation for wave propagation in highly disordered stratified media , 1995 .

[11]  Jean-Pierre Fouque,et al.  Pressure Fields Generated by Acoustical Pulses Propagating in Randomly Layered Media , 1998, SIAM J. Appl. Math..

[12]  George Papanicolaou,et al.  Frequency Content of Randomly Scattered Signals , 1991, SIAM Rev..

[13]  M Siderius,et al.  An evaluation of the accuracy of shallow water matched field inversion results. , 2001, The Journal of the Acoustical Society of America.

[14]  George Papanicolaou,et al.  Pulse stabilization in a strongly heterogeneous layered medium , 1994 .

[15]  J. Scales,et al.  Extracting the Green function from diffuse, equipartitioned waves. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[17]  N. A. Anstey,et al.  Reflections on AMPLITUDES , 1971 .

[18]  Benjamin S. White,et al.  Statistics for pulse reflection from a randomly layered medium , 1987 .

[19]  R. Weaver,et al.  Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. , 2001, Physical review letters.

[20]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[21]  Guillaume Bal,et al.  Time Reversal and Refocusing in Random Media , 2003, SIAM J. Appl. Math..

[22]  A. Paul,et al.  Long-Range Correlations in the Diffuse Seismic Coda , 2003, Science.

[23]  Mrinal K. Sen,et al.  Global Optimization Methods in Geophysical Inversion , 1995 .

[24]  Jean-Pierre Fouque,et al.  Spreading of a Pulse Travelling in Random Media , 1994 .

[25]  Peter L. Nielsen,et al.  Experimental study of geo-acoustic inversion uncertainty due to ocean sound-speed fluctuations , 2001 .

[26]  Guillaume Bal,et al.  SELF-AVERAGING IN TIME REVERSAL FOR THE PARABOLIC WAVE EQUATION , 2002, nlin/0205025.

[27]  George Papanicolaou,et al.  Statistical Stability in Time Reversal , 2004, SIAM J. Appl. Math..

[28]  Stan E. Dosso,et al.  Geoacoustic Inversion for the Workshop '97 Benchmark Test Cases Using Simulated Annealing , 1998 .

[29]  Benjamin S. White,et al.  Probing a random medium with a pulse , 1989 .

[30]  R. Snieder Extracting the Green's function from the correlation of coda waves: a derivation based on stationary phase. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  P. Drummond,et al.  Time reversed acoustics , 1997 .

[32]  Knut Sølna,et al.  Time-Reversal Aperture Enhancement , 2003, Multiscale Model. Simul..

[33]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[34]  A. Tolstoy,et al.  Matched Field Processing for Underwater Acoustics , 1992 .

[35]  W A Kuperman,et al.  Focalization: environmental focusing and source localization. , 1991, The Journal of the Acoustical Society of America.

[36]  James Rickett,et al.  Passive seismic imaging applied to synthetic data , 1996 .

[37]  Arthur B. Baggeroer,et al.  An overview of matched field methods in ocean acoustics , 1993 .