Stimuli-responsive functional materials for soft robotics.

Functional materials have spurred the advancement of soft robotics with the potential to perform safe interactions and adaptative functions in unstructured environments. The responses of functional materials under external stimuli lend themselves to programmable actuation and sensing, opening up new possibilities of robot design with built-in mechanical intelligence and unlocking new applications. Here, we review the development of stimuli-responsive functional materials particularly used for soft robotic systems. This review covers five representative types of soft stimuli-responsive functional materials, namely (i) dielectric elastomers, (ii) hydrogels, (iii) shape memory polymers, (iv) liquid crystal elastomers, and (v) magnetic materials, with focuses on their inherent material properties, working mechanisms, and design strategies for actuation and sensing. We also highlight the state-of-the-art applications of soft stimuli-responsive functional materials in locomotion robots, grippers and sensors. Finally, we summarize the current challenges and map out future trends for engineering next-generation functional materials for soft robotics.

[1]  Robert J. Wood,et al.  Controlled flight of a microrobot powered by soft artificial muscles , 2019, Nature.

[2]  Bo Yang,et al.  Biomimetic bone tissue engineering hydrogel scaffolds constructed using ordered CNTs and HA induce the proliferation and differentiation of BMSCs. , 2019, Journal of materials chemistry. B.

[3]  Matteo Cianchetti,et al.  Soft robotics: Technologies and systems pushing the boundaries of robot abilities , 2016, Science Robotics.

[4]  Ting Wang,et al.  Micellar-incorporated hydrogels with highly tough, mechanoresponsive, and self-recovery properties for strain-induced color sensors , 2018 .

[5]  Y. Huang,et al.  Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and Manufacturing , 2019, Advanced Functional Materials.

[6]  S. Cai,et al.  Bioinspired Design of Vascular Artificial Muscle , 2018, Advanced Materials Technologies.

[7]  Zhigang Suo,et al.  Stretchable and fatigue-resistant materials , 2020 .

[8]  David R. Clarke,et al.  Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields , 2019, Nature Communications.

[9]  G. Kofod,et al.  Enhancement Of Dielectric Permittivity And Electromechanical Response In Silicone Elastomers: Molecular Grafting Of Organic Dipoles To The Macromolecular Network , 2011 .

[10]  Xiangyang Zhu,et al.  A survey on dielectric elastomer actuators for soft robots , 2017, Bioinspiration & biomimetics.

[11]  Jingxia Wang,et al.  Bio-inspired liquid crystal actuator materials , 2019, Journal of Materials Chemistry C.

[12]  Shangli Wu,et al.  Programmed Multiresponsive Hydrogel Assemblies with Light‐Tunable Mechanical Properties, Actuation, and Fluorescence , 2020, Advanced Functional Materials.

[13]  Jeffrey N. Murphy,et al.  An Untethered Magnetic‐ and Light‐Responsive Rotary Gripper: Shedding Light on Photoresponsive Liquid Crystal Actuators , 2019, Advanced Optical Materials.

[14]  Limin Zhu,et al.  Open-Loop Control of Creep and Vibration in Dielectric Elastomer Actuators With Phenomenological Models , 2017, IEEE/ASME Transactions on Mechatronics.

[15]  Xuanhe Zhao,et al.  Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity , 2020, Nature Communications.

[16]  T. White,et al.  Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. , 2015, Nature materials.

[17]  Daniel M. Vogt,et al.  Compact Dielectric Elastomer Linear Actuators , 2018, Advanced Functional Materials.

[18]  D. Guyomar,et al.  Bifunctional organic/inorganic nanocomposites for energy harvesting, actuation and magnetic sensing applications , 2014 .

[19]  Haider Butt,et al.  Wearable Contact Lens Biosensors for Continuous Glucose Monitoring Using Smartphones , 2018, ACS nano.

[20]  Danhquang Tran,et al.  Dielectric elastomer actuators based on stretchable and self-healable hydrogel electrodes , 2019, Royal Society Open Science.

[21]  Mahdi Agheli,et al.  Soft force sensor made of magnetic powder blended with silicone rubber , 2019, Sensors and Actuators A: Physical.

[22]  A. Sirivat,et al.  Electrostrictive properties of thermoplastic polyurethane elastomer: Effects of urethane type and soft–hard segment composition , 2013 .

[23]  G. Whitesides,et al.  Pneumatic Networks for Soft Robotics that Actuate Rapidly , 2014 .

[24]  Tongqing Lu,et al.  Experimental investigation of the electromechanical phase transition in a dielectric elastomer tube , 2015 .

[25]  Meng Li,et al.  Flexible magnetic composites for light-controlled actuation and interfaces , 2018, Proceedings of the National Academy of Sciences.

[26]  Jianzhong Fu,et al.  Programmed Deformations of 3D‐Printed Tough Physical Hydrogels with High Response Speed and Large Output Force , 2018, Advanced Functional Materials.

[27]  Jiaqi Liu,et al.  Responsive and Foldable Soft Materials , 2020 .

[28]  Hong Yang,et al.  Near-Infrared Chromophore Functionalized Soft Actuator with Ultrafast Photoresponsive Speed and Superior Mechanical Property. , 2017, Journal of the American Chemical Society.

[29]  J. Cornelissen,et al.  Conversion of light into macroscopic helical motion. , 2014, Nature chemistry.

[30]  Ali Khademhosseini,et al.  Highly Stretchable, Strain Sensing Hydrogel Optical Fibers , 2016, Advanced materials.

[31]  Robert J. Wood,et al.  Robotic Artificial Muscles: Current Progress and Future Perspectives , 2019, IEEE Transactions on Robotics.

[32]  Metin Sitti,et al.  Small-scale soft-bodied robot with multimodal locomotion , 2018, Nature.

[33]  G. Kofod,et al.  A versatile method for enhancement of electromechanical sensitivity of silicone elastomers , 2012 .

[34]  Metin Sitti,et al.  Shape-programmable magnetic soft matter , 2016, Proceedings of the National Academy of Sciences.

[35]  J. Lewis,et al.  3D Printing of Interdigitated Dielectric Elastomer Actuators , 2019, Advanced Functional Materials.

[36]  Mengmeng Liu,et al.  Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing , 2017, Science Advances.

[37]  Ujjaval Gupta,et al.  Soft robots based on dielectric elastomer actuators: a review , 2019, Smart Materials and Structures.

[38]  MajidiCarmel,et al.  Soft Robotics: A Perspective—Current Trends and Prospects for the Future , 2014 .

[39]  H. Shea,et al.  Multifunctional shape memory electrodes for dielectric elastomer actuators enabling high holding force and low-voltage multisegment addressing , 2017 .

[40]  Santhosh Ragan,et al.  Soft-I-Robot , 2012 .

[41]  Frederikke Bahrt Madsen,et al.  Self-Healing, High-Permittivity Silicone Dielectric Elastomer. , 2016, ACS macro letters.

[42]  Xiangyang Zhu,et al.  Design of 3D printed programmable horseshoe lattice structures based on a phase-evolution model. , 2020, ACS applied materials & interfaces.

[43]  Qiu Jiang,et al.  MXenes stretch hydrogel sensor performance to new limits , 2018, Science Advances.

[44]  C. Ohm,et al.  Liquid Crystalline Elastomers as Actuators and Sensors , 2010, Advanced materials.

[45]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[46]  N. Pan,et al.  Supercapacitive Iontronic Nanofabric Sensing , 2017, Advanced materials.

[47]  Xuanhe Zhao,et al.  Tough Bonding of Hydrogels to Diverse Nonporous Surfaces , 2015, Nature materials.

[48]  Krzysztof K. Krawczyk,et al.  Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport , 2012, Advanced materials.

[49]  Tingrui Pan,et al.  Flexible Transparent Iontronic Film for Interfacial Capacitive Pressure Sensing , 2015, Advanced materials.

[50]  Xiangyang Zhu,et al.  Soft wall-climbing robots , 2018, Science Robotics.

[51]  Z. Suo Theory of dielectric elastomers , 2010 .

[52]  Hong Yang,et al.  A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes , 2016, Nature Communications.

[53]  D. Wiersma,et al.  Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. , 2016, Nature materials.

[54]  Minoru Asada,et al.  Mexican-Hat-Like Response in a Flexible Tactile Sensor Using a Magnetorheological Elastomer , 2018, Sensors.

[55]  Yu-Zhong Wang,et al.  Novel liquid crystalline copolyester containing amphi-mesogenic units toward multiple stimuli-response behaviors , 2017 .

[56]  Lining Sun,et al.  A Super-Lightweight and Soft Manipulator Driven by Dielectric Elastomers. , 2020, Soft robotics.

[57]  Fariba Dehghani,et al.  Printed, Flexible pH Sensor Hydrogels for Wet Environments , 2018, Advanced Materials Technologies.

[58]  Shuhong Yu,et al.  Anisotropic and self-healing hydrogels with multi-responsive actuating capability , 2019, Nature Communications.

[59]  M. Sitti,et al.  Soft Actuators for Small‐Scale Robotics , 2017, Advanced materials.

[60]  Sukyoung Won,et al.  Contactless Manipulation of Soft Robots , 2019, Materials.

[61]  Qiji Ze,et al.  Magnetic Shape Memory Polymers with Integrated Multifunctional Shape Manipulation , 2019, Advanced materials.

[62]  Jun Fu,et al.  Electric Field Actuation of Tough Electroactive Hydrogels Cross-Linked by Functional Triblock Copolymer Micelles. , 2016, ACS applied materials & interfaces.

[63]  A. K. Hoshiar,et al.  A Magnetically Controlled Soft Microrobot Steering a Guidewire in a Three-Dimensional Phantom Vascular Network , 2019, Soft robotics.

[64]  D. Floreano,et al.  Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators , 2016, Advanced materials.

[65]  Tianqi Xu,et al.  Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions , 2019, Science Robotics.

[66]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[67]  Jiang Zou,et al.  High-Precision Tracking Control of a Soft Dielectric Elastomer Actuator With Inverse Viscoelastic Hysteresis Compensation , 2019, IEEE/ASME Transactions on Mechatronics.

[68]  Yung Chang,et al.  From design to applications of stimuli-responsive hydrogel strain sensors. , 2020, Journal of materials chemistry. B.

[69]  H. Finkelmann,et al.  Investigations on liquid crystalline polysiloxanes 3. Liquid crystalline elastomers — a new type of liquid crystalline material , 1981 .

[70]  T. Xie Tunable polymer multi-shape memory effect , 2010, Nature.

[71]  Yoan Civet,et al.  An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators , 2019, Science Robotics.

[72]  Haodong Zhu,et al.  Universal SMP gripper with massive and selective capabilities for multiscaled, arbitrarily shaped objects , 2020, Science Advances.

[73]  Yu-Zhong Wang,et al.  Azobenzene-containing liquid crystalline polyester with π–π interactions: diverse thermo- and photo-responsive behaviours , 2017 .

[74]  Lidong Zhang,et al.  Microscopic hollow hydrogel springs, necklaces and ladders: a tubular robot as a potential vascular scavenger , 2019, Materials Horizons.

[75]  G. Lau,et al.  Very high dielectric strength for dielectric elastomer actuators in liquid dielectric immersion , 2013 .

[76]  F. B. Madsen,et al.  The Current State of Silicone-Based Dielectric Elastomer Transducers. , 2016, Macromolecular rapid communications.

[77]  Weiqiu Chen,et al.  Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots , 2018, Advanced materials.

[78]  Zhouyue Lei,et al.  A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities , 2018, Nature Communications.

[79]  Yang Gao,et al.  Highly Stretchable and Self‐Healable MXene/Polyvinyl Alcohol Hydrogel Electrode for Wearable Capacitive Electronic Skin , 2019, Advanced Electronic Materials.

[80]  Chia-Hung Chen,et al.  Gradient Porous Elastic Hydrogels with Shape‐Memory Property and Anisotropic Responses for Programmable Locomotion , 2015 .

[81]  Shawn A. Chester,et al.  Printing ferromagnetic domains for untethered fast-transforming soft materials , 2018, Nature.

[82]  Robert J. Wood,et al.  Untethered soft robotics , 2018 .

[83]  Li Wen,et al.  A soft gripper with programmable effective length, tactile and curvature sensory feedback , 2020, Smart Materials and Structures.

[84]  P. Mather,et al.  A hydrogel‐forming liquid crystalline elastomer exhibiting soft shape memory , 2016 .

[85]  Xuanhe Zhao,et al.  Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water , 2017, Nature Communications.

[86]  A. Iannarelli,et al.  Frequency-independent breakdown strength of dielectric elastomers under AC stress , 2019, Applied Physics Letters.

[87]  Metin Sitti,et al.  Pros and Cons: Magnetic versus Optical Microrobots , 2020, Advanced materials.

[88]  M Calisti,et al.  Fundamentals of soft robot locomotion , 2017, Journal of The Royal Society Interface.

[89]  Guoying Gu,et al.  Integrated Soft Ionotronic Skin with Stretchable and Transparent Hydrogel-Elastomer Ionic Sensors for Hand-Motion Monitoring. , 2019, Soft robotics.

[90]  Lei Wu,et al.  In Situ Swelling-Gated Chemical Sensing Actuator , 2020 .

[91]  J. Rieger,et al.  Thermochromic and Piezocapacitive Flexible Sensor Array by Combining Composite Elastomer Dielectrics and Transparent Ionic Hydrogel Electrodes , 2019, Advanced Materials Technologies.

[92]  Lidong Zhang,et al.  Humidity-Driven Soft Actuator Built up Layer-by-Layer and Theoretical Insight into Its Mechanism of Energy Conversion. , 2019, The journal of physical chemistry letters.

[93]  Tingyu Cheng,et al.  Fast-moving soft electronic fish , 2017, Science Advances.

[94]  Ningbin Zhang,et al.  Fast‐Response, Stiffness‐Tunable Soft Actuator by Hybrid Multimaterial 3D Printing , 2019, Advanced Functional Materials.

[95]  T. Xie Recent advances in polymer shape memory , 2011 .

[96]  Tao Chen,et al.  Antifreezing and Stretchable Organohydrogels as Soft Actuators , 2019, Research.

[97]  Jun Yang,et al.  Monolithic Dual‐Material 3D Printing of Ionic Skins with Long‐Term Performance Stability , 2019, Advanced Functional Materials.

[98]  Seyedali Banisadr,et al.  Infrared actuation-induced simultaneous reconfiguration of surface color and morphology for soft robotics , 2017, Scientific Reports.

[99]  Guihua Yu,et al.  Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Low‐Temperature Tolerant Strain Sensors , 2019, Advanced Functional Materials.

[100]  O. Wichterle,et al.  Hydrophilic Gels for Biological Use , 1960, Nature.

[101]  F. Roland,et al.  Global CO2 emissions from dry inland waters share common drivers across ecosystems , 2020, Nature Communications.

[102]  Jun Li,et al.  Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer. , 2016, ACS applied materials & interfaces.

[103]  Allison M. Okamura,et al.  A soft robot that navigates its environment through growth , 2017, Science Robotics.

[104]  T. White,et al.  All‐Optical Control of Shape , 2018, Advanced materials.

[105]  Salvador Pané,et al.  Soft micromachines with programmable motility and morphology , 2016, Nature Communications.

[106]  Michael T. Tolley,et al.  Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators , 2018, Science Robotics.

[107]  Intrinsically Stretchable and Shape Memory Conducting Nanofiber for Programmable Flexible Electronic Films. , 2019, ACS applied materials & interfaces.

[108]  Haifeng Yu,et al.  Photocontrollable Liquid‐Crystalline Actuators , 2011, Advanced materials.

[109]  Jizhou Song,et al.  Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot , 2018, Science Advances.

[110]  S. Cai,et al.  Reprogrammable, Reprocessible, and Self-Healable Liquid Crystal Elastomer with Exchangeable Disulfide Bonds. , 2017, ACS applied materials & interfaces.

[111]  Amir Hosein Sakhaei,et al.  Multimaterial 4D Printing with Tailorable Shape Memory Polymers , 2016, Scientific Reports.

[112]  Yang Yang,et al.  Untethered Recyclable Tubular Actuators with Versatile Locomotion for Soft Continuum Robots , 2018, Advanced materials.

[113]  K. Bertoldi,et al.  Dielectric Elastomer Based “Grippers” for Soft Robotics , 2015, Advanced materials.

[114]  A. Lendlein,et al.  Reprogrammable recovery and actuation behaviour of shape-memory polymers , 2019, Nature Reviews Materials.

[115]  G. Lau,et al.  Inhibiting electro-thermal breakdown of acrylic dielectric elastomer actuators by dielectric gel coating , 2016 .

[116]  Carter S. Haines,et al.  Intelligently Actuating Liquid Crystal Elastomer‐Carbon Nanotube Composites , 2019, Advanced Functional Materials.

[117]  Donghwa Lee,et al.  Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel. , 2014, ACS applied materials & interfaces.

[118]  Kai Qu,et al.  Pure PEDOT:PSS hydrogels , 2019, Nature Communications.

[119]  Jeong-Yun Sun,et al.  Highly stretchable, transparent ionic touch panel , 2016, Science.

[120]  Abdullah S. Almansouri,et al.  An Imperceptible Magnetic Skin , 2019, Advanced Materials Technologies.

[121]  Shahriar Mirabbasi,et al.  Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array , 2017, Science Advances.

[122]  Zhigang Suo,et al.  The thickness and stretch dependence of the electrical breakdown strength of an acrylic dielectric elastomer , 2012 .

[123]  Yang Wang,et al.  Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation , 2019, Science Advances.

[124]  Jinsong Leng,et al.  Dielectric Elastomer Spring-Roll Bending Actuators: Applications in Soft Robotics and Design. , 2019, Soft robotics.

[125]  H. Butt,et al.  Shaping the Assembly of Superparamagnetic Nanoparticles , 2019, ACS nano.

[126]  R. Wood,et al.  Realizing the potential of dielectric elastomer artificial muscles , 2019, Proceedings of the National Academy of Sciences.

[127]  Toshiro Noritsugu,et al.  Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire , 2014 .

[128]  T. White,et al.  Materials as Machines , 2020, Advanced materials.

[129]  D. Floreano,et al.  Soft Robotic Grippers , 2018, Advanced materials.

[130]  Robert F Shepherd,et al.  Simple Synthesis of Elastomeric Photomechanical Switches That Self-Heal. , 2019, Macromolecular rapid communications.

[131]  Alexandre Poulin,et al.  Printing low-voltage dielectric elastomer actuators , 2015 .

[132]  Ujjaval Gupta,et al.  A soft gripper of fast speed and low energy consumption , 2018, Science China Technological Sciences.

[133]  Xuanhe Zhao,et al.  Ferromagnetic soft continuum robots , 2019, Science Robotics.

[134]  A. Lendlein,et al.  Reversible Bidirectional Shape‐Memory Polymers , 2013, Advanced materials.

[135]  Heinrich M. Jaeger,et al.  Universal robotic gripper based on the jamming of granular material , 2010, Proceedings of the National Academy of Sciences.

[136]  Z. Suo,et al.  Highly stretchable and tough hydrogels , 2012, Nature.

[137]  Xiangyang Zhu,et al.  Automatic Design of Soft Dielectric Elastomer Actuators With Optimal Spatial Electric Fields , 2019, IEEE Transactions on Robotics.

[138]  Zhenan Bao,et al.  Electronic Skin: Recent Progress and Future Prospects for Skin‐Attachable Devices for Health Monitoring, Robotics, and Prosthetics , 2019, Advanced materials.

[139]  Xuemin Du,et al.  Chameleon-Inspired Structural-Color Actuators , 2019, Matter.

[140]  S. Cai,et al.  Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle. , 2018, ACS applied materials & interfaces.

[141]  Xiaodong He,et al.  Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application. , 2016, Nanoscale.

[142]  Sanlin S. Robinson,et al.  Highly stretchable electroluminescent skin for optical signaling and tactile sensing , 2016, Science.

[143]  Metin Sitti,et al.  Soft erythrocyte-based bacterial microswimmers for cargo delivery , 2018, Science Robotics.

[144]  C. Bowman,et al.  Light-Stimulated Permanent Shape Reconfiguration in Cross-Linked Polymer Microparticles. , 2017, ACS applied materials & interfaces.

[145]  Lenore L. Dai,et al.  Electronically Programmable, Reversible Shape Change in Two‐ and Three‐Dimensional Hydrogel Structures , 2013, Advanced materials.

[146]  Choon Chiang Foo,et al.  Stretchable, Transparent, Ionic Conductors , 2013, Science.

[147]  Xuemin Du,et al.  Vapomechanically Responsive Motion of Microchannel‐Programmed Actuators , 2017, Advanced materials.

[148]  Li Yu,et al.  Photomechanical response of polymer-dispersed liquid crystals/graphene oxide nanocomposites , 2014 .

[149]  Stephen J. Benkovic,et al.  Corrigendum: RecG and UvsW catalyse robust DNA rewinding critical for stalled DNA replication fork rescue , 2014, Nature Communications.

[150]  Jian Zhu,et al.  A Soft Jellyfish Robot Driven by a Dielectric Elastomer Actuator , 2016, IEEE Robotics and Automation Letters.

[151]  Bernhard Gleich,et al.  Spatially selective remote magnetic actuation of identical helical micromachines , 2017, Science Robotics.

[152]  Suk‐kyun Ahn,et al.  Highly Stretchable Strain Sensors Comprising Double Network Hydrogels Fabricated by Microfluidic Devices , 2019, Advanced Materials Technologies.

[153]  J. Lewis,et al.  Voltage-controlled morphing of dielectric elastomer circular sheets into conical surfaces , 2019, Extreme Mechanics Letters.

[154]  Dominik P. J. Barz,et al.  A Novel Flexible Hybrid Battery–Supercapacitor Based on a Self‐Assembled Vanadium‐Graphene Hydrogel , 2020, Advanced Functional Materials.

[155]  J. E. Marshall,et al.  Carbon-nanotube sensitized nematic elastomer composites for IR-visible photo-actuation , 2012 .