Pinning Effect Enhanced Structural Stability toward a Zero‐Strain Layered Cathode for Sodium‐Ion Batteries

[1]  Chenglong Zhao,et al.  Rational design of layered oxide materials for sodium-ion batteries , 2020, Science.

[2]  Yi Xie,et al.  Fast Lithium Ion Conductivity in Layered (Li-Ag)CrS2. , 2020, Journal of the American Chemical Society.

[3]  Haoshen Zhou,et al.  A P2-type layered Na0.75Ni1/3Ru1/6Mn1/2O2 cathode material with excellent rate performance for sodium ion batteries. , 2020, ACS applied materials & interfaces.

[4]  T. Deng,et al.  Realizing Complete Solid‐Solution Reaction in High Sodium Content P2‐Type Cathode for High‐Performance Sodium‐Ion Batteries , 2020, Angewandte Chemie.

[5]  Wenquan Lu,et al.  Probing Thermal Stability of Li-Ion Battery Ni-Rich Layered Oxide Cathodes by means of Operando Gas Analysis and Neutron Diffraction , 2020 .

[6]  T. Deng,et al.  Realizing Complete Solid-Solution Reaction in a High Sodium-Content P2-Type Cathode for High-Performance Sodium-Ion Batteries. , 2020, Angewandte Chemie.

[7]  Huakun Liu,et al.  A Cation and Anion Dual Doping Strategy for the Elevation of Titanium Redox Potential for High‐Power Sodium‐Ion Batteries , 2020, Angewandte Chemie.

[8]  S. Dou,et al.  Strategy of Cation and Anion Dual Doping for Potential Elevating of Titanium Redox for High-Power Sodium-Ion Batteries. , 2020, Angewandte Chemie.

[9]  Yu‐Guo Guo,et al.  Manipulating Layered P2@P3 Integrated Spinel Structure Evolution for High‐Performance Sodium‐Ion Batteries , 2020, Angewandte Chemie.

[10]  Yu‐Guo Guo,et al.  Manipulating Layered P2@P3 Integrated Spinel Structure Evolution for High-Performance Sodium-Ion Battery. , 2020, Angewandte Chemie.

[11]  M. Winter,et al.  The effect of Sn substitution on the structure and oxygen activity of Na0.67Ni0.33Mn0.67O2 cathode materials for sodium ion batteries , 2020 .

[12]  Yi Cui,et al.  A Water Stable, Near‐Zero‐Strain O3‐Layered Titanium‐Based Anode for Long Cycle Sodium‐Ion Battery , 2019, Advanced Functional Materials.

[13]  Haoshen Zhou,et al.  Suppressing Cation Migration and Reducing Particle Cracks in a Layered Fe-Based Cathode for Advanced Sodium-Ion Batteries. , 2019, Small.

[14]  P. Bruce,et al.  Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes , 2019, Nature.

[15]  P. Yan,et al.  Dopant Segregation Boosting High‐Voltage Cyclability of Layered Cathode for Sodium Ion Batteries , 2019, Advanced materials.

[16]  Lijun Wang,et al.  Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries , 2019, Journal of Materials Science.

[17]  J. Tarascon,et al.  Reaching the Energy Density Limit of Layered O3‐NaNi0.5Mn0.5O2 Electrodes via Dual Cu and Ti Substitution , 2019, Advanced Energy Materials.

[18]  Tongchao Liu,et al.  Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control. , 2019, Accounts of chemical research.

[19]  Yaping Zhang,et al.  Sustainability-inspired cell design for a fully recyclable sodium ion battery , 2019, Nature Communications.

[20]  Xiao-dong Guo,et al.  High‐Abundance and Low‐Cost Metal‐Based Cathode Materials for Sodium‐Ion Batteries: Problems, Progress, and Key Technologies , 2019, Advanced Energy Materials.

[21]  Haoshen Zhou,et al.  A New Type of Li‐Rich Rock‐Salt Oxide Li2Ni1/3Ru2/3O3 with Reversible Anionic Redox Chemistry , 2019, Advanced materials.

[22]  Xiao‐Qing Yang,et al.  Tuning P2-Structured Cathode Material by Na-Site Mg Substitution for Na-Ion Batteries. , 2019, Journal of the American Chemical Society.

[23]  P. Yan,et al.  Phase transition induced cracking plaguing layered cathode for sodium-ion battery , 2018, Nano Energy.

[24]  Dierk Raabe,et al.  Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes , 2018, Nature.

[25]  P. He,et al.  Revealing the Critical Role of Titanium in Layered Manganese‐Based Oxides toward Advanced Sodium‐Ion Batteries via a Combined Experimental and Theoretical Study , 2018, Small Methods.

[26]  M. Obrovac,et al.  Synthesis and Electrochemistry of O3-type NaFeO2-NaCo0.5Ni0.5O2 Solid Solutions for Na-Ion Positive Electrodes. , 2018, ACS applied materials & interfaces.

[27]  Liquan Chen,et al.  Iron migration and oxygen oxidation during sodium extraction from NaFeO2 , 2018 .

[28]  Dongfeng Chen,et al.  Improving the Performance of Layered Oxide Cathode Materials with Football-Like Hierarchical Structure for Na-Ion Batteries by Incorporating Mg2+ into Vacancies in Na-Ion Layers. , 2018, ChemSusChem.

[29]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[30]  Yu-Guo Guo,et al.  Layered Oxide Cathodes for Sodium‐Ion Batteries: Phase Transition, Air Stability, and Performance , 2018 .

[31]  P. He,et al.  Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries. , 2018, Science bulletin.

[32]  Wolfgang Brehm,et al.  Von Lithium- zu Natriumionenbatterien: Vorteile, Herausforderungen und Überraschendes , 2018 .

[33]  Prasant Kumar Nayak,et al.  From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. , 2018, Angewandte Chemie.

[34]  Ting Zhu,et al.  Additively manufactured hierarchical stainless steels with high strength and ductility. , 2018, Nature materials.

[35]  K. Kang,et al.  Efficient Method of Designing Stable Layered Cathode Material for Sodium Ion Batteries Using Aluminum Doping. , 2017, The journal of physical chemistry letters.

[36]  Hong‐Jie Peng,et al.  Metal/nanocarbon layer current collectors enhanced energy efficiency in lithium-sulfur batteries. , 2017, Science bulletin.

[37]  L. Nazar,et al.  Structural Evolution and Redox Processes Involved in the Electrochemical Cycling of P2–Na0.67[Mn0.66Fe0.20Cu0.14]O2 , 2017 .

[38]  Zongping Shao,et al.  LiNi0.29Co0.33Mn0.38O2 polyhedrons with reduced cation mixing as a high-performance cathode material for Li-ion batteries synthesized via a combined co-precipitation and molten salt heating technique , 2017 .

[39]  Z. Wen,et al.  Cobalt-substituted Na0.44Mn1-xCoxO2: phase evolution and a high capacity positive electrode for sodium-ion batteries , 2016 .

[40]  Chongwu Zhou,et al.  Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification , 2016 .

[41]  Yanli Zhao,et al.  Hierarchical Porous LiNi1/3Co1/3Mn1/3O2 Nano-/Micro Spherical Cathode Material: Minimized Cation Mixing and Improved Li+ Mobility for Enhanced Electrochemical Performance , 2016, Scientific Reports.

[42]  Ya‐Xia Yin,et al.  Enhancing the Kinetics of Li‐Rich Cathode Materials through the Pinning Effects of Gradient Surface Na+ Doping , 2016 .

[43]  Yunhui Huang,et al.  Routes to High Energy Cathodes of Sodium‐Ion Batteries , 2016 .

[44]  F. Du,et al.  P2-NaCo(0.5)Mn(0.5)O2 as a Positive Electrode Material for Sodium-Ion Batteries. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[45]  K. Amine,et al.  Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co, and Mn with Li in Layered Lithium Transition-Metal Oxide Cathode Materials , 2015 .

[46]  Dipan Kundu,et al.  Natriumionenbatterien für die elektrochemische Energiespeicherung , 2015 .

[47]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[48]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[49]  Haoshen Zhou,et al.  Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: experimental and first-principles calculations , 2014 .

[50]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[51]  A. Yamada,et al.  Electrode Properties of P2–Na2/3MnyCo1–yO2 as Cathode Materials for Sodium-Ion Batteries , 2013 .

[52]  X. Fang,et al.  Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries , 2013, Science.

[53]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[54]  Dong-Hwa Seo,et al.  A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries , 2012 .

[55]  Lin Gu,et al.  Lithium Storage in Li4Ti5O12 Spinel: The Full Static Picture from Electron Microscopy , 2012, Advanced materials.

[56]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[57]  G. Rao,et al.  Li ion kinetic studies on spinel cathodes, Li(M1/6Mn11/6)O4(M = Mn, Co, CoAl) by GITT and EIS , 2003 .

[58]  Fujio Abe,et al.  Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions , 2003, Nature.

[59]  Zhonghua Lu,et al.  In Situ X-Ray Diffraction Study of P 2 ­ Na2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2 , 2001 .

[60]  N. Browning,et al.  Atomic-resolution chemical analysis using a scanning transmission electron microscope , 1993, Nature.

[61]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2 , 1992 .