Archimedean components of triangular norms

Abstract The Archimedean components of triangular norms (which turn the closed unit interval into anabelian, totally ordered semigroup with neutral element 1) are studied, in particular their extension to triangular norms, and some construction methods for Archimedean components are given. The triangular norms which are uniquely determined by their Archimedean components are characterized. Using ordinal sums and additive generators, new types of left-continuous triangular norms are constructed.

[1]  A. H. Clifford,et al.  Connected ordered topological semigroups with idempotent endpoints. II. , 1958 .

[2]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[3]  Radko Mesiar,et al.  Triangular norms as ordinal sums of semigroups in the sense of A. H. Clifford , 2002 .

[4]  Sándor Jenei,et al.  Structure of left-continuous triangular norms with strong induced negations (I) Rotation construction , 2000, J. Appl. Non Class. Logics.

[5]  W. M. Faucett Compact semigroups irreducibly connected between two idempotents , 1955 .

[6]  E. Pap Null-Additive Set Functions , 1995 .

[7]  Andrea Mesiarová-Zemánková,et al.  Continuous triangular subnorms , 2004, Fuzzy Sets Syst..

[8]  R. J. Koch,et al.  The theory of topological semigroups , 1986 .

[9]  K. Menger Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[10]  B. Schweizer,et al.  Statistical metric spaces. , 1960 .

[11]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[12]  K. Hofmann,et al.  A survey on totally ordered semigroups , 1996 .

[13]  Radko Mesiar,et al.  Uniform approximation of associative copulas by strict and non-strict copulas , 2001 .

[14]  Radko Mesiar,et al.  Ordinal sums of aggregation operators , 2002 .

[15]  J. Aczél,et al.  Lectures on Functional Equations and Their Applications , 1968 .

[16]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[17]  Sándor Jenei,et al.  Structure of left-continuous triangular norms with strong induced negations (II) Rotation-annihilation construction , 2001, J. Appl. Non Class. Logics.

[18]  S. Weber,et al.  Fundamentals of a Generalized Measure Theory , 1999 .

[19]  J. Rosser,et al.  Fragments of many-valued statement calculi , 1958 .

[20]  M. Tokizawa,et al.  On Topological Semigroups , 1982 .

[21]  Karl H. Hofmann,et al.  Linearly ordered semigroups: Historical origins and A.H. Clifford's influence , 1995 .

[22]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[23]  S. Gottwald A Treatise on Many-Valued Logics , 2001 .

[24]  D. Butnariu,et al.  Triangular Norm-Based Measures and Games with Fuzzy Coalitions , 1993 .

[25]  Endre Pap,et al.  Fixed Point Theory in Probabilistic Metric Spaces , 2001 .

[26]  Jaroslav Smítal,et al.  Measures of chaos and a spectral decomposition of dynamical systems on the interval , 1994 .

[27]  A. H. Clifford,et al.  Naturally Totally Ordered Commutative Semigroups , 1954 .

[28]  P. Mostert,et al.  On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .