Modeling of surface roughness in abrasive water jet machining of AZ91 magnesium alloy using Fuzzy logic and Regression analysis

[1]  Dhiraj Kumar,et al.  Abrasive waterjet machining of Ti/CFRP/Ti laminate and multi-objective optimization of the process parameters using response surface methodology , 2020, Journal of Composite Materials.

[2]  M. Ravichandran,et al.  Experimental investigations on abrasive water jet machining of nickel-based superalloy , 2019, Journal of the Brazilian Society of Mechanical Sciences and Engineering.

[3]  Muammer Nalbant,et al.  Optimization of machining parameters for abrasive water jet drilling of carbon fiber-reinforced polymer composite material using Taguchi method , 2019, Aircraft Engineering and Aerospace Technology.

[4]  R. Balachandar,et al.  Cut quality characteristics of Al 6061-T6 composites using abrasive water jet machining , 2018 .

[5]  M. Kulisz,et al.  Effect of the AWJM Method on the Machined Surface Layer of AZ91D Magnesium Alloy and Simulation of Roughness Parameters Using Neural Networks , 2018, Materials.

[6]  M. Balasubramanian,et al.  Impact of Nozzle Design on Surface Roughness of Abrasive Jet Machined Glass Fibre Reinforced Polymer Composites , 2018, Silicon.

[7]  Gnanavelbabu A,et al.  Investigation on the cutting quality characteristics of abrasive water jet machining of AA6061-B4C-hBN hybrid metal matrix composites , 2018 .

[8]  M. Uthayakumar,et al.  Abrasive water jet machining of fiber-reinforced composite materials , 2018 .

[9]  M. Balasubramanian,et al.  Effect of abrasive jet process parameters on machining glass fibre reinforced polymer composite , 2017 .

[10]  M. Balasubramanian,et al.  Influence of nozzle design and process parameters on surface roughness of CFRP machined by abrasive jet , 2017 .

[11]  N. Arunkumar,et al.  Investigation on performance of abrasive water jet in machining hybrid composites , 2017 .

[12]  M. Kumar,et al.  Surface integrity studies on abrasive water jet cutting of AISI D2 steel , 2017 .

[13]  M. Uthayakumar,et al.  Machinability of Nickel-Based Superalloy by Abrasive Water Jet Machining , 2016 .

[14]  M. Pradeep Kumar,et al.  Multiresponse Optimization of Abrasive Water Jet Cutting Process Parameters Using TOPSIS Approach , 2015 .

[15]  N. Babu,et al.  PENETRATION ABILITY OF ABRASIVE WATERJETS IN CUTTING OF ALUMINUM-SILICON CARBIDE PARTICULATE METAL MATRIX COMPOSITES , 2012 .

[16]  Janet Folkes,et al.  Waterjet—An innovative tool for manufacturing , 2009 .

[17]  Hari Singh,et al.  Simultaneous optimisation of conflicting responses for CNC turned parts using desirability function , 2009, Int. J. Manuf. Technol. Manag..

[18]  T. Kuriyagawa,et al.  An Experimental Study to Enhance the Cutting Performance in Abrasive Waterjet Machining , 2003 .

[19]  N. Ramakrishnan,et al.  A study on the shape of the surface generated by abrasive jet machining , 2002 .

[20]  M. Hashish,et al.  A Model for Abrasive-Waterjet (AWJ) Machining , 1989 .

[21]  Kamal Hassan,et al.  Optimization MRR Of Stainless Steel 403 In Abrasive Water Jet Machining UsingAnova And Taguchi Method , 2015 .

[22]  P. Shanmughasundaram INFLUENCE OF ABRASIVE WATER JET MACHINING PARAMETERS ON THE SURFACE ROUGHNESS OF EUTECTIC Al-Si ALLOY – GRAPHITE COMPOSITES , 2014 .

[23]  Hakan Gürün,et al.  Effect of traverse speed on abrasive waterjet machining of Ti–6Al–4V alloy , 2007 .