Bootstrapping spectra: Methods, comparisons and application to knock data

The problem of confidence interval estimation for spectra is addressed. Unlike asymptotic techniques, bootstrap techniques provide accurate measures of confidence in that they maintain the preset level, in particular for small sample sizes and non-Gaussian data. We investigate some recently proposed methods, a time domain bootstrap approach, the so-called tapered block bootstrap and a combined time domain and frequency domain approach, the so-called autoregressive-aided periodogram bootstrap. We compare the methods with a well-established frequency domain residual based bootstrap technique in view of confidence accuracy. Confidence interval estimates for spectra of knock data are shown.

[1]  M. Chavance [Jackknife and bootstrap]. , 1992, Revue d'epidemiologie et de sante publique.

[2]  D. Politis,et al.  The Local Bootstrap for Periodogram Statistics , 1999 .

[3]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[4]  Wolfgang Härdle,et al.  On Bootstrapping Kernel Spectral Estimates , 1992 .

[5]  P. Robinson,et al.  AUTOMATIC FREQUENCY DOMAIN INFERENCE ON SEMIPARAMETRIC AND NONPARAMETRIC MODELS , 1991 .

[6]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[7]  Herold Dehling,et al.  Empirical Process Techniques for Dependent Data , 2002 .

[8]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[9]  Abdelhak M. Zoubir,et al.  Estimation of Cylinder-Wise Combustion Features from Engine Speed and Cylinder Pressure , 2008 .

[10]  Efstathios Paparoditis,et al.  Frequency Domain Bootstrap for Time Series , 2002 .

[11]  Arnold J Stromberg,et al.  Subsampling , 2001, Technometrics.

[12]  Abdelhak M. Zoubir,et al.  Bootstrapping kernel spectral density estimates with kernel bandwidth estimation , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[13]  Peter Bloomfield,et al.  DETERMINING THE BANDWIDTH OF A KERNEL SPECTRUM ESTIMATE , 1987 .

[14]  P. Bühlmann,et al.  Block length selection in the bootstrap for time series , 1999 .

[15]  Boualem Boashash,et al.  Time-Frequency Signal Analysis and Processing , 2002 .

[16]  Angelo J. Canty Bootstrap Techniques for Signal Processing , 2007 .

[17]  R. Shibata An Optimal Autoregressive Spectral Estimate , 1981 .

[18]  Abdelhak M. Zoubir,et al.  On confidence intervals for the coherence function , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[19]  D.N. Politis,et al.  Bootstrap confidence bands for spectra and cross-spectra , 1989, Sixth Multidimensional Signal Processing Workshop,.

[20]  Abdelhak M. Zoubir,et al.  Bootstrap multiple tests applied to sensor location , 1995, IEEE Trans. Signal Process..

[21]  Abdelhak M. Zoubir,et al.  Bootstrap based nonparametric curve and confidence band estimates for spectral densities , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[22]  E. Paparoditis,et al.  Autoregressive-aided periodogram bootstrap for time series , 2003 .

[23]  Efstathios Paparoditis,et al.  Tapered block bootstrap , 2001 .