Latent forward model for Real-time Strategy game planning with incomplete information

Model-free deep reinforcement learning approaches have shown superhuman performance in simulated environments (e.g., Atari games, Go, etc). During training, these approaches often implicitly construct a latent space that contains key information for decision making. In this paper, we learn a forward model on this latent space and apply it to model-based planning in miniature Real-time Strategy game with incomplete information (MiniRTS). We first show that the latent space constructed from existing actor-critic models contains relevant information of the game, and design training procedure to learn forward models. We also show that our learned forward model can predict meaningful future state and is usable for latent space Monte-Carlo Tree Search (MCTS), in terms of win rates against rule-based agents.