ON THE FORMATION OF GALACTIC THICK DISKS

Recent spectroscopic observations in the Milky Way suggest that the chemically defined thick disk (stars that have high [α/Fe] ratios and are thus old) has a significantly smaller scale-length than the thin disk. This is in apparent contradiction with observations of external edge-on galaxies, where the thin and thick components have comparable scale-lengths. Moreover, while observed disks do not flare (scale-height does not increase with radius), numerical simulations suggest that disk flaring is unavoidable, resulting from both environmental effects and secular evolution. Here we address these problems by studying two different suites of simulated galactic disks formed in the cosmological context. We show that the scale-heights of coeval populations always increase with radius. However, the total population can be decomposed morphologically into thin and thick disks, which do not flare. We relate this to the disk inside-out formation, where younger populations have increasingly larger scale-lengths and flare at progressively larger radii. In this new picture, thick disks are composed of the imbedded flares of mono-age stellar populations. Assuming that disks form inside out, we predict that morphologically defined thick disks must show a decrease in age (or [α/Fe] ratios) with radius and that coeval populations should always flare. This also explains the observed inversion in the metallicity and [α/Fe] gradients for stars away from the disk midplane in the Milky Way. The results of this work are directly linked to, and can be seen as evidence of, inside-out disk growth.

[1]  D. A. García-Hernández,et al.  TRACING CHEMICAL EVOLUTION OVER THE EXTENT OF THE MILKY WAY'S DISK WITH APOGEE RED CLUMP STARS , 2014, 1409.3566.

[2]  G. Carraro,et al.  THE THICKENING OF THE THIN DISK IN THE THIRD GALACTIC QUADRANT , 2014, 1409.0068.

[3]  J. Kerp,et al.  DOES THE STELLAR DISTRIBUTION FLARE? A COMPARISON OF STELLAR SCALE HEIGHTS WITH LAB H i DATA , 2014, 1408.5334.

[4]  M. Feast,et al.  Cepheid variables in the flared outer disk of our galaxy , 2014, Nature.

[5]  M. Martig,et al.  Dissecting simulated disc galaxies - II. The age-velocity relation , 2014, 1405.1727.

[6]  M. Martig,et al.  Dissecting simulated disc galaxies - I. The structure of mono-age populations , 2014, 1405.1726.

[7]  S. White,et al.  The diverse formation histories of simulated disc galaxies , 2014, 1404.6926.

[8]  C. Chiappini,et al.  Chemodynamical evolution of the Milky Way disk II: Variations with Galactic radius and height above the disk plane , 2014, 1401.5796.

[9]  Adam L. Kraus,et al.  THREE WIDE PLANETARY-MASS COMPANIONS TO FW TAU, ROXs 12, AND ROXs 42B , 2013, 1311.7664.

[10]  T. Beers,et al.  CHEMICAL CARTOGRAPHY WITH APOGEE: LARGE-SCALE MEAN METALLICITY MAPS OF THE MILKY WAY DISK , 2013, 1311.4569.

[11]  J. Brinkmann,et al.  Chemodynamics of the Milky Way - I. The first year of APOGEE data , 2013, 1311.4549.

[12]  U. Munari,et al.  Chemical gradients in the Milky Way from the RAVE data I. Dwarf stars , 2013, 1406.7244.

[13]  B. Gibson,et al.  A NEW STELLAR CHEMO–KINEMATIC RELATION REVEALS THE MERGER HISTORY OF THE MILKY WAY DISK , 2013, 1310.5145.

[14]  B. Gibson,et al.  Chemical gradients in the Milky Way from the RAVE data , 2013, 1309.4279.

[15]  M. Lehnert,et al.  The age structure of stellar populations in the solar vicinity Clues of a two-phase formation history of the Milky Way disk , 2013, 1305.4663.

[16]  Thorsten Naab,et al.  Towards a more realistic population of bright spiral galaxies in cosmological simulations , 2013, 1304.1559.

[17]  Zurich,et al.  MaGICC thick disc - I. Comparing a simulated disc formed with stellar feedback to the Milky Way , 2013, 1301.5318.

[18]  L. Ho,et al.  BREAKS IN THIN AND THICK DISKS OF EDGE-ON GALAXIES IMAGED IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G) , 2012, 1209.1513.

[19]  C. Chiappini,et al.  Chemodynamical evolution of the Milky Way disk - I. The solar vicinity , 2012, 1208.1506.

[20]  B. Gibson,et al.  Thin disc, thick disc and halo in a simulated galaxy , 2012, 1206.0740.

[21]  M. Martig,et al.  Radial migration does little for Galactic disc thickening , 2012, 1205.6475.

[22]  Judy Y. Cheng,et al.  A SHORT SCALE LENGTH FOR THE α-ENHANCED THICK DISK OF THE MILKY WAY: EVIDENCE FROM LOW-LATITUDE SEGUE DATA , 2012, 1204.5179.

[23]  S. White,et al.  Idealized models for galactic disc formation and evolution in ‘realistic’ ΛCDM haloes , 2012, 1203.1190.

[24]  R. Teyssier,et al.  A DIVERSITY OF PROGENITORS AND HISTORIES FOR ISOLATED SPIRAL GALAXIES , 2012, 1201.1079.

[25]  H. Rix,et al.  THE SPATIAL STRUCTURE OF MONO-ABUNDANCE SUB-POPULATIONS OF THE MILKY WAY DISK , 2011, 1111.1724.

[26]  Judy Y. Cheng,et al.  METALLICITY GRADIENTS IN THE MILKY WAY DISK AS OBSERVED BY THE SEGUE SURVEY , 2011, 1110.5933.

[27]  L. Ho,et al.  THICK DISKS OF EDGE-ON GALAXIES SEEN THROUGH THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G): LAIR OF MISSING BARYONS? , 2011, 1108.0037.

[28]  J. Mel'endez,et al.  A FIRST CONSTRAINT ON THE THICK DISK SCALE LENGTH: DIFFERENTIAL RADIAL ABUNDANCES IN K GIANTS AT GALACTOCENTRIC RADII 4, 8, AND 12 kpc , 2011, 1106.1914.

[29]  B. Gibson,et al.  Disc heating: comparing the Milky Way with cosmological simulations , 2011, 1104.2037.

[30]  Lucio Mayer,et al.  FORMING REALISTIC LATE-TYPE SPIRALS IN A ΛCDM UNIVERSE: THE ERIS SIMULATION , 2011, 1103.6030.

[31]  C. Brook,et al.  Misaligned angular momentum in hydrodynamic cosmological simulations: warps, outer discs and thick discs , 2010, 1006.1659.

[32]  M. Martig,et al.  THE THICK DISKS OF SPIRAL GALAXIES AS RELICS FROM GAS-RICH, TURBULENT, CLUMPY DISKS AT HIGH REDSHIFT , 2009, 0910.3677.

[33]  R. Teyssier,et al.  MORPHOLOGICAL QUENCHING OF STAR FORMATION: MAKING EARLY-TYPE GALAXIES RED , 2009, 0905.4669.

[34]  S. White,et al.  The formation and survival of discs in a ΛcDM universe , 2008, 0812.0976.

[35]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[36]  A. Helmi,et al.  Simulations of minor mergers - I. General properties of thick discs , 2008, 0803.2323.

[37]  L. Moustakas,et al.  Cold Dark Matter Substructure and Galactic Disks. I. Morphological Signatures of Hierarchical Satellite Accretion , 2007, 0708.1949.

[38]  S. Zaroubi,et al.  On the three-dimensional structure of edge-on disc galaxies , 2007, astro-ph/0703768.

[39]  Olivier Bienayme,et al.  THE RADIAL VELOCITY EXPERIMENT (RAVE): FIFTH DATA RELEASE , 2013, 1609.03210.

[40]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[41]  P. Yoachim,et al.  Structural Parameters of Thin and Thick Disks in Edge-on Disk Galaxies , 2005, astro-ph/0508460.

[42]  D. Ojha Radial scalelengths of the galactic thin and thick disc with 2MASS data , 2001 .

[43]  R. Grijs The global structure of galactic discs , 1998 .

[44]  C. Chiappini,et al.  The Chemical Evolution of the Galaxy: The Two-Infall Model , 1996, astro-ph/9609199.

[45]  E. Brocato,et al.  Metallicity distribution and abundance ratios in the stars of the Galactic bulge , 1990 .

[46]  Gerard Gilmore,et al.  New light on faint stars – III. Galactic structure towards the South Pole and the Galactic thick disc , 1983 .

[47]  V. Tsikoudi Photometry and structure of lenticular galaxies. I - NGC 3115 , 1979 .

[48]  D. Burstein Structure and origin of S0 galaxies. III - The luminosity distribution perpendicular to the plane of the disks in S0's , 1979 .

[49]  C. Frenk,et al.  The Aquarius Project : the subhalos of galactic halos , 2008 .

[50]  S. Zaroubi,et al.  On the 3 dimensional structure of edge-on disk galaxies , 2007 .