Experimental Demonstration of High-Speed 4 × 4 Imaging Multi-CAP MIMO Visible Light Communications

In general, visible light communication (VLC) systems, which utilise white light-emitting diodes (LEDs), only offer a bandwidth limited to the lower MHz region. Therefore, providing VLC-based high data rate communications systems using VLC becomes a challenging task. To address this challenge, we propose a solution based on multiplexing in both the frequency and space domains. We experimentally demonstrate a 4 <inline-formula><tex-math notation="LaTeX"> ${\boldsymbol{\times }}$</tex-math></inline-formula> 4 imaging multiple-input multiple-output (MIMO) VLC system (i.e., space multiplexing) utilising multiband carrierless amplitude and phase (<italic>m</italic>-CAP) modulation (i.e., frequency multiplexing). Independently, both MIMO and <italic>m</italic>-CAP have separately shown the remarkable ability to improve the transmission speeds in VLC systems, and hence, here we combine them to further improve the net data rate. We investigate the link performance by varying the number of subcarriers <italic>m</italic> , link distance <inline-formula><tex-math notation="LaTeX">$\boldsymbol{L}$</tex-math></inline-formula>, and signal bandwidth <inline-formula><tex-math notation="LaTeX">$\boldsymbol{B_{\text{sig}}}$</tex-math></inline-formula>. From all the values tested, we show that a data rate of <inline-formula><tex-math notation="LaTeX">$\sim$</tex-math> </inline-formula>249 Mb/s can be maximally achieved for <italic>m</italic> = 20, <inline-formula> <tex-math notation="LaTeX">$B_{\text{sig}}$</tex-math></inline-formula> = 20 MHz, and <inline-formula> <tex-math notation="LaTeX">$\boldsymbol{L}$</tex-math></inline-formula> = 1 m, at a bit error rate of <inline-formula><tex-math notation="LaTeX">${3.2\times 10^{-3}}$</tex-math></inline-formula> using LEDs with <inline-formula><tex-math notation="LaTeX">$\sim$</tex-math></inline-formula>4 MHz bandwidth.

[1]  Xiqi Gao,et al.  Cellular architecture and key technologies for 5G wireless communication networks , 2014, IEEE Communications Magazine.

[2]  Hideki Ochiai,et al.  Performance analysis of deliberately clipped OFDM signals , 2002, IEEE Trans. Commun..

[3]  N. Chi,et al.  Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems. , 2013, Optics express.

[4]  Tao Jiang,et al.  An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals , 2008, IEEE Transactions on Broadcasting.

[5]  G. Cossu,et al.  1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation , 2012, IEEE Photonics Journal.

[6]  H. Haas,et al.  A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride $\mu{\rm LED}$ , 2014, IEEE Photonics Technology Letters.

[7]  Jiun-Yu Sung,et al.  Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications? , 2014, Optics express.

[8]  Liang Chen,et al.  Theoretical Characterization of Nonlinear Clipping Effects in IM/DD Optical OFDM Systems , 2012, IEEE Transactions on Communications.

[9]  Chi Wan Sung,et al.  BER analysis for interfering visible light communication systems , 2016, 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP).

[10]  R.A. Shafik,et al.  On the Extended Relationships Among EVM, BER and SNR as Performance Metrics , 2006, 2006 International Conference on Electrical and Computer Engineering.

[11]  Zabih Ghassemlooy,et al.  Visible Light Communications: 170 Mb/s Using an Artificial Neural Network Equalizer in a Low Bandwidth White Light Configuration , 2014, Journal of Lightwave Technology.

[12]  D. O’brien,et al.  100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED , 2009, IEEE Photonics Technology Letters.

[13]  C. Wei,et al.  3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[14]  Thomas Q. Wang,et al.  Hemispherical lens based imaging receiver for MIMO optical wireless communications , 2012, 2012 IEEE Globecom Workshops.

[15]  Sien Chi,et al.  Performance Comparison of OFDM Signal and CAP Signal Over High Capacity RGB-LED-Based WDM Visible Light Communication , 2013, IEEE Photonics Journal.

[16]  J. Yu,et al.  11 × 5 × 9.3Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection. , 2013, Optics express.

[17]  Zabih Ghassemlooy,et al.  Experimental Demonstration of 50-Mb/s Visible Light Communications Using 4 $\,\times\,$ 4 MIMO , 2014, IEEE Photonics Technology Letters.

[18]  Volker Jungnickel,et al.  High-speed visible light communication systems , 2013, IEEE Communications Magazine.

[19]  Idelfonso Tafur Monroy,et al.  Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links , 2014, Journal of Lightwave Technology.

[20]  G. Noakes,et al.  College Physics , 1945, Nature.

[21]  Wasiu O. Popoola,et al.  Visible Light Communications: Theory and Applications , 2016 .

[22]  Zabih Ghassemlooy,et al.  A MIMO-ANN system for increasing data rates in organic visible light communications systems , 2013, 2013 IEEE International Conference on Communications (ICC).

[23]  Zabih Ghassemlooy,et al.  Emerging Optical Wireless Communications-Advances and Challenges , 2015, IEEE Journal on Selected Areas in Communications.

[24]  Chao-Hsin Wu,et al.  High-speed modulation from the fast mode extraction of a photonic crystal light-emitting diode , 2016 .

[25]  W. Marsden I and J , 2012 .

[26]  Dominic C. O'Brien,et al.  Imaging-MIMO visible light communication system using μLEDs and integrated receiver , 2014, 2014 IEEE Globecom Workshops (GC Wkshps).

[27]  Meng-Chyi Wu,et al.  High-Speed GaN-Based Blue Light-Emitting Diodes With Gallium-Doped ZnO Current Spreading Layer , 2013, IEEE Electron Device Letters.

[28]  John G. Proakis,et al.  Digital Communications , 1983 .

[29]  Hoa Le Minh,et al.  Exploiting Equalization Techniques for Improving Data Rates in Organic Optoelectronic Devices for Visible Light Communications , 2012, Journal of Lightwave Technology.

[30]  Giulio Cossu,et al.  5.6 Gbit/s downlink and 1.5 Gbit/s uplink optical wireless transmission at indoor distances (≥ 1.5 m) , 2014, 2014 The European Conference on Optical Communication (ECOC).

[31]  Stanislav Zvanovec,et al.  A Multi-CAP Visible-Light Communications System With 4.85-b/s/Hz Spectral Efficiency , 2015, IEEE Journal on Selected Areas in Communications.

[32]  Zabih Ghassemlooy,et al.  Multi-band carrier-less amplitude and phase modulation for highly bandlimited visible light communications — Invited paper , 2015, 2015 International Conference on Wireless Communications & Signal Processing (WCSP).

[33]  S. Achuthan Kumar,et al.  Visible Light Communication , 2018 .

[34]  G Cossu,et al.  3.4 Gbit/s visible optical wireless transmission based on RGB LED. , 2012, Optics express.

[35]  J. Armstrong,et al.  OFDM for Optical Communications , 2009, Journal of Lightwave Technology.

[36]  Shlomi Arnon,et al.  An Experimental Comparison of Different Bit-and-Power-Allocation Algorithms for DCO-OFDM , 2014, Journal of Lightwave Technology.

[37]  J. Armstrong,et al.  Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD Systems , 2013, Journal of Lightwave Technology.

[38]  Zabih Ghassemlooy,et al.  CURVE is the Institutional Repository for Coventry University A 20-Mb / s VLC Link With a Polymer LED and a Multilayer Perceptron , 2016 .

[39]  Zabih Ghassemlooy,et al.  Optical Wireless Communications: System and Channel Modelling with MATLAB® , 2012 .