Innocent game models of untyped lambda-calculus

We present a new denotational model for the untyped l-calculus, using the techniques of game semantics. The strategies used are innocent in the sense of Hyland and Ong (Inform. and Comput., to appear) and Nickau (Hereditarily Sequential Functionals: A Game-Theoretic Approach to Sequentiality, Shaker-Verlag, 1996. Dissertation, Universitat Gesamthochschule Siegen, Shaker-Verlag, 1996), but the traditional distinction between "question" and "answer" moves is removed. We first construct models D and DREC as global sections of a reflexive object in the categories A and AREC of arenas and innocent and recursive innocent strategies, respectively. We show that these are sensible le-algebras but are neither extensional nor universal. We then introduce a new representation of innocent strategies in an economical form. We show a strong connexion between the economical form of the denotation of a term in the game models and a variable-free form of the Nakajima tree of the term. Using this we show that the definable elements of DREC are precisely what we call effectively almost-everywhere copycat (EAC) strategies. The category AEAC with these strategies as morphisms gives rise to a λη-model DEAC which we show has the same expressive power as D, i.e. the equational theory of DEAC is the maximal consistent sensible theory H*. We show that the model DEAC is sensible, order-extensional and universal (i.e. every strategy is the denotation of some λ-term). To our knowledge this is the first syntax-free model of the untyped λ-calculus with the universality property. Copyright 2002 Elsevier Science B.V.

[1]  de Ng Dick Bruijn Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[2]  Christiaan Peter Jozef Koymans,et al.  Models of the Lambda Calculus , 1982, Inf. Control..

[3]  Samson Abramsky,et al.  Games and full abstraction for the lazy /spl lambda/-calculus , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[4]  de Ng Dick Bruijn,et al.  Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[5]  M. Schönfinkel Über die Bausteine der mathematischen Logik , 1924 .

[6]  Samson Abramsky,et al.  Call-by-Value Games , 1997, CSL.

[7]  G. Plotkin Tω as a Universal Domain , 1978 .

[8]  H. Barendregt The type free lambda calculus , 1977 .

[9]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[10]  Guy McCusker,et al.  Games and Full Abstraction f"or the Lazy X-calculus , 1995 .

[11]  Samson Abramsky,et al.  Games for Recursive Types , 1994, Theory and Formal Methods.

[12]  Stephen Cole Kleene,et al.  On the interpretation of intuitionistic number theory , 1945, Journal of Symbolic Logic.

[13]  Giuseppe Longo,et al.  Set-theoretical models of λ-calculus: theories, expansions, isomorphisms , 1983, Ann. Pure Appl. Log..

[14]  C.-H. Luke Ong The Lazy Lambda Calculus : an investigation into the foundations of functional programming , 1988 .

[15]  Roy L. Crole,et al.  Categories for Types , 1994, Cambridge mathematical textbooks.

[16]  G.D. Plotkin,et al.  LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..

[17]  C.-H. Luke Ong,et al.  On Full Abstraction for PCF: I, II, and III , 2000, Inf. Comput..

[18]  John R. Longley,et al.  Realizability toposes and language semantics , 1995 .

[19]  Russell Harmer Games and full abstraction for non-deterministic languages , 1999 .

[20]  Wesley Phoa From Term Models to Domains , 1994, Inf. Comput..

[21]  James David Laird,et al.  A semantic analysis of control , 1999 .

[22]  Gordon Plotkin,et al.  A Set-Theoretical Definition of Application , 2003 .

[23]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[24]  Pietro Di Gianantonio,et al.  The Fine Structure of Game Lambda Models , 2000, FSTTCS.

[25]  Reiji Nakajima Infinite normal forms for the lambda - calculus , 1975, Lambda-Calculus and Computer Science Theory.

[26]  Samson Abramsky,et al.  Full Abstraction for PCF * ( Extended Abstract ) , 1994 .

[27]  Nobuko Yoshida,et al.  Game-Theoretic Analysis of Call-by-Value Computation , 1999, Theor. Comput. Sci..

[28]  Haskell B. Curry Grundlagen der kombinatorischen Logik , 1930 .

[29]  Pierre-Louis Curien,et al.  Sequential Algorithms on Concrete Data Structures , 1982, Theor. Comput. Sci..

[30]  C.-H. Luke Ong,et al.  Full Abstraction in the Lazy Lambda Calculus , 1993, Inf. Comput..

[31]  Andreas Blass,et al.  A Game Semantics for Linear Logic , 1992, Ann. Pure Appl. Log..

[32]  Walter Felscher Dialogues as a Foundation for Intuitionistic Logic , 2002 .

[33]  Radha Jagadeesan,et al.  Full Abstraction for PCF , 1994, Inf. Comput..

[34]  Guy McCusker Games and Full Abstraction for a Functional Metalanguage with Recursive Types , 1998, Distinguished Dissertations.

[35]  Pietro Di Gianantonio,et al.  Game Semantics for Untyped λβη-Calculus , 1999 .

[36]  Dana S. Scott,et al.  A Type-Theoretical Alternative to ISWIM, CUCH, OWHY , 1993, Theor. Comput. Sci..

[37]  John Longley The sequentially realizable functionals , 2002, Ann. Pure Appl. Log..

[38]  M. Hyland A Syntactic Characterization of the Equality in Some Models for the Lambda Calculus , 1976 .

[39]  Christopher P. Wadsworth,et al.  The Relation Between Computational and Denotational Properties for Scott's Dinfty-Models of the Lambda-Calculus , 1976, SIAM J. Comput..

[40]  Radha Jagadeesan,et al.  Games and Full Completeness for Multiplicative Linear Logic , 1994, J. Symb. Log..

[41]  H Nickau,et al.  A universal innocent model of the Bohm tree lambda theoryA. Ker , 2000 .

[42]  Jan Willem Klop,et al.  Infinitary Lambda Calculus , 1997, Theoretical Computer Science.

[43]  Furio Honsell,et al.  Game Semantics for Untyped lambda beta eta-Calculus , 1999, TLCA.

[44]  N. Cutland Computability: An Introduction to Recursive Function Theory , 1980 .

[45]  J. V. Oosten,et al.  A combinatory algebra for sequential functionals of finite type , 1997 .

[46]  A. Church A Set of Postulates for the Foundation of Logic , 1932 .

[47]  D. Dalen Review: Georg Kreisel, Godel's Intepretation of Heyting's Arithmetic; G. Kreisel, Relations Between Classes of Constructive Functionals; Georg Kreisel, A. Heyting, Interpretation of Analysis by Means of Constructive Functionals of Finite Types , 1971 .

[48]  Samson Abramsky,et al.  The Lazy λ−Calculus , 1990 .

[49]  C.-H. Luke Ong,et al.  A Universal Innocent Game Model for the Böhm Tree Lambda Theory , 1999, CSL.

[50]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .