MILLIMETER-WAVE OBSERVATIONS OF CN AND HNC AND THEIR 15N ISOTOPOLOGUES: A NEW EVALUATION OF THE 14N/15N RATIO ACROSS THE GALAXY

The N = 1 → 0 transitions of CN and C15N (X2Σ+), as well as the J = 1 → 0 lines of HN13C and H15NC, have been observed toward 11 molecular clouds using the new 3 mm ALMA-type receiver of the 12 m telescope of the Arizona Radio Observatory. These sources span a wide range of distances from the Galactic center and are all regions of star formation. From these observations, 14N/15N ratios have been determined using two independent methods. First, the measurements of C14N and C15N were directly compared to establish this ratio, correcting for high opacities when needed, as indicated by the nitrogen hyperfine intensities. Second, the ratio was calculated from the quantity [HN13C]/[H15NC], determined from the HNC data, and then scaled by 12C/13C ratios previously established, i.e., the so-called double isotope method. Values from both methods are in reasonable agreement, and fall in the range ∼120–400, somewhat lower than previous 14N/15N ratios derived from HCN. The ratios exhibit a distinct positive gradient with distance from the Galactic center, following the relationship14N/15N = 21.1 (5.2) kpc−1 DGC + 123.8 (37.1). This gradient is consistent with predictions of Galactic chemical evolution models in which 15N has a secondary origin in novae, while primary and secondary sources exist for 14N. The local interstellar medium value was found to be 4N/15N = 290 ± 40, in agreement with the ratio found in nearby diffuse clouds and close to the value of 272 found in Earth's atmosphere.

[1]  F. Schuller,et al.  High-mass star formation at high luminosities: W31 at >106 L ☉ , 2011, 1104.2202.

[2]  L. Bonal,et al.  Highly 15N-enriched chondritic clasts in the CB/CH-like meteorite Isheyevo , 2010 .

[3]  M. Wiescher,et al.  The Cold and Hot CNO Cycles , 2010 .

[4]  J. Bally,et al.  Accretion of Jupiter's atmosphere from a supernova-contaminated molecular cloud , 2010, 1112.3113.

[5]  P. Ade,et al.  Herschel-SPIRE spectroscopy of the DR21 molecular cloud core , 2010, 1005.2874.

[6]  K. Cunha,et al.  Chemical abundances in the universe : connecting first stars to planets : proceedings of the 265th symposium of the International Astronomical Union held in Rio de Janeiro, Brazil, August 10-14, 2009 , 2010 .

[7]  N. Sakai,et al.  Abundance anomaly of the 13 C species of CCH , 2010 .

[8]  S. Desch,et al.  INJECTION OF SUPERNOVA DUST IN NEARBY PROTOPLANETARY DISKS , 2010 .

[9]  M. Gerin,et al.  NITROGEN ISOTOPIC FRACTIONATION IN INTERSTELLAR AMMONIA , 2010, 1001.0744.

[10]  L. Coudert,et al.  Detection of 15NH2D in dense cores : a new tool for measuring the 14N/15N ratio in the cold ISM , 2009, 0903.3155.

[11]  S. Charnley,et al.  Nitrogen Isotopic Fractionation of Interstellar Nitriles , 2008 .

[12]  J. Prochaska,et al.  Large Excess of Heavy Nitrogen in Both Hydrogen Cyanide and Cyanogen from Comet 17P/Holmes , 2008, 0804.1192.

[13]  H. Bechtel,et al.  Laboratory Measurements of the Hyperfine Structure of H14N12C and D14N12C , 2006 .

[14]  Benjamin J. McCall,et al.  Diffuse Atomic and Molecular Clouds , 2006 .

[15]  P. Hoppe,et al.  Interstellar Chemistry Recorded in Organic Matter from Primitive Meteorites , 2006, Science.

[16]  M. Gerin,et al.  Infrared detection of gas phase formaldehyde towards the high mass protostar W33A , 2006 .

[17]  T. Millar,et al.  A Molecular Line Survey of W3(OH) and W3 IRS 5 from 84.7 to 115.6 GHz: Observational Data and Analyses , 2006 .

[18]  M. A. Brewster,et al.  The 12C/13C Isotope Gradient Derived from Millimeter Transitions of CN: The Case for Galactic Chemical Evolution , 2005 .

[19]  L. Leshin,et al.  The Cradle of the Solar System , 2004, Science.

[20]  Qizhou Zhang,et al.  The Case for Local Collapse in the W51 Star-forming Region , 2004 .

[21]  D. Lester,et al.  High-Resolution Far-Infrared Observations and Models of the Star Formation Core of G34.3+0.2C , 2004 .

[22]  D. Clayton Handbook of Isotopes in the Cosmos: Hydrogen to Gallium , 2003 .

[23]  B. Marty,et al.  Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles , 2003 .

[24]  E. Jehin,et al.  Anomalous Nitrogen Isotope Ratio in Comets , 2003, Science.

[25]  Ian Wright,et al.  Investigating the variations in carbon and nitrogen isotopes in carbonaceous chondrites , 2003 .

[26]  S. Tachibana,et al.  The Initial Abundance of 60Fe in the Solar System , 2003 .

[27]  Italy.,et al.  Nova nucleosynthesis and Galactic evolution of the CNO isotopes , 2003, astro-ph/0302233.

[28]  G. Meynet,et al.  CNO in the universe , 2003 .

[29]  L. Ziurys,et al.  Galactic 12C/13C Ratios from Millimeter-Wave Observations of Interstellar CN , 2002 .

[30]  S. Messenger Deuterium enrichments in interplanetary dust , 2002 .

[31]  T. Hirota,et al.  The H13CN/HC15N Abundance Ratio in Dense Cores: Possible Source-to-Source Variation of Isotope Abundances? , 2002 .

[32]  B. Marty,et al.  Solar wind record on the moon: deciphering presolar from planetary nitrogen. , 2000, Science.

[33]  E. Herbst,et al.  The possibility of nitrogen isotopic fractionation in interstellar clouds , 2000 .

[34]  J. Cernicharo,et al.  Extended Far-Infrared CO Emission in the OMC-1 Core of Orion , 1999, Astrophysical Journal.

[35]  T. Encrenaz,et al.  ISO-SWS Observations of Jupiter: Measurement of the Ammonia Tropospheric Profile and of the 15N/14N Isotopic Ratio , 1999, astro-ph/9911257.

[36]  Savage,et al.  Cyanide Chemistry in Comet Hale-Bopp (C/1995 O1). , 1999, The Astrophysical journal.

[37]  T. Wilson Isotopes in the interstellar medium and circumstellar envelopes , 1999 .

[38]  R. Kallenbach,et al.  Isotopic Composition of Solar Wind Nitrogen: First In Situ Determination with the CELIAS/MTOF Spectrometer on board SOHO , 1998 .

[39]  D. Lambert,et al.  The Circumstellar Shell of the Post-Asymptotic Giant Branch Star HD 56126: The 12CN/13CN Isotope Ratio and Fractionation , 1997, astro-ph/9711173.

[40]  T. Owen,et al.  Measurements of 12C/13C, 14N/15N, and 32S/34S ratios in comet Hale-Bopp (C/1995 O1). , 1997, Science.

[41]  Y. Kuan,et al.  Three millimeter molecular line observations of sagittarius B2. II. High-resolution studies of C18O, HNCO, NH2CHO, and HCOOCH3 , 1996 .

[42]  G. F. Mitchell,et al.  An HCO + Study of NGC 7538, IRS 9, and GL 490 , 1995 .

[43]  G. Winnewisser,et al.  Interstellar CN rotational spectra: (12)C(15)N , 1994 .

[44]  David A. Williams,et al.  Dynamical models of molecular clouds: nitrogen chemistry , 1990 .

[45]  A. Penzias,et al.  C-12/C-13 isotope ratio across the Galaxy from observations of C-13/O-18 in molecular clouds , 1990 .

[46]  G. Tilton,et al.  Geochim. cosmochim. acta , 1989 .

[47]  J. Stutzki,et al.  High spatial resolution isotopic CO and CS observations of M17 SW - The clumpy structure of the molecular cloud core , 1989 .

[48]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[49]  B. Shustov Protostars and Planets II , 1987 .

[50]  M. Joy,et al.  Infrared and millimeter-wave observations of the sharpless 156 molecular cloud , 1984 .

[51]  G. Blake,et al.  The millimeter and submillimeter spectrum of CN in its first four vibrational states , 1983 .

[52]  M. Tosi,et al.  CNO isotopes and galactic chemical evolution , 1982 .

[53]  A. Penzias,et al.  Observations of /sup 14/N//sup 15/N in the galactic disk , 1981 .

[54]  David A. Williams,et al.  Formaldehyde production in diffuse interstellar clouds , 1979 .

[55]  J. Storey,et al.  Observation of J = 1 → 0 emission from H15NC , 1977 .

[56]  P. Thaddeus,et al.  On the relationship of interstellar N2H/+/, HCO/+/, HCN, and CN , 1977 .

[57]  G. Winnewisser,et al.  Detection of the Millimeter Wave Spectrum of Hydrogen Isocyanide, HNC1,2 , 1976 .

[58]  R. L. Smith,et al.  Carbon and eruptive stars: surface enrichment of lithium, carbon, nitrogen, and $sup 13$C by deep mixing , 1974 .