On the Origin of the Asymmetry of the Ejecta Structure and Explosion of G350.1–0.3
暂无分享,去创建一个
S. Yamada | Y. Uchiyama | Toshiki Sato | Ryota Higurashi | Tomoya Tsuchioka | H. Iwasaki | S. Otsuka | S. Yamada
[1] K. Borkowski,et al. Expansion and Age of the Supernova Remnant G350.1–0.3: High-velocity Iron Ejecta from a Core-collapse Event , 2020, The Astrophysical Journal.
[2] Y. Shibanov,et al. Thermal luminosities of cooling neutron stars , 2020, 2006.15004.
[3] D. Burrows,et al. An Ejecta Kinematics Study of Kepler’s Supernova Remnant with High-resolution Chandra HETG Spectroscopy , 2019, The Astrophysical Journal.
[4] H. Janka,et al. Intermediate-mass Elements in Young Supernova Remnants Reveal Neutron Star Kicks by Asymmetric Explosions , 2017, 1710.10372.
[5] J. Hughes,et al. X-Ray Measurements of the Particle Acceleration Properties at Inward Shocks in Cassiopeia A , 2017, 1710.06992.
[6] J. Hughes,et al. Freely Expanding Knots of X-Ray-emitting Ejecta in Kepler’s Supernova Remnant , 2017, 1707.08609.
[7] E. Ramirez-Ruiz,et al. Comparing Neutron Star Kicks to Supernova Remnant Asymmetries , 2017, 1705.08454.
[8] H. Janka,et al. Nucleosynthesis in the Innermost Ejecta of Neutrino-driven Supernova Explosions in Two Dimensions , 2017, 1701.06786.
[9] J. E. Williams,et al. A Python Calculator for Supernova Remnant Evolution , 2017, 1701.05942.
[10] Chris L. Fryer,et al. THE DISTRIBUTION OF RADIOACTIVE 44Ti IN CASSIOPEIA A , 2016, 1612.02774.
[11] H. Janka,et al. Production and Distribution of 44Ti and 56Ni in a Three-dimensional Supernova Model Resembling Cassiopeia A , 2016, 1610.05643.
[12] T. Tsuru,et al. Abundances in the ejecta of core-collapse supernova remnants G350.1−0.3 and G349.7+0.2 , 2014, 1403.6898.
[13] Chris L. Fryer,et al. Asymmetries in core-collapse supernovae from maps of radioactive 44Ti in Cassiopeia A , 2014, Nature.
[14] N. Smith. Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014, 1402.1237.
[15] E. Müller,et al. Three-dimensional neutrino-driven supernovae: neutron star kicks, spins, and asymmetric ejection of nucleosynthesis products , 2012, 1210.8148.
[16] F. Timmes,et al. TRENDS IN 44Ti AND 56Ni FROM CORE-COLLAPSE SUPERNOVAE , 2010, 1009.3175.
[17] Craig O. Heinke,et al. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant , 2009, Nature.
[18] U. Michigan,et al. The (Re-)Discovery of G350.1–0.3: A Young, Luminous Supernova Remnant and Its Neutron Star , 2008, 0804.0462.
[19] M. Dopita,et al. The Expansion Asymmetry and Age of the Cassiopeia A Supernova Remnant , 2006, astro-ph/0603371.
[20] E. Müller,et al. Multidimensional supernova simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions , 2006, astro-ph/0601302.
[21] Chris L. Fryer,et al. Effects of Neutrino-driven Kicks on the Supernova Explosion Mechanism , 2005, astro-ph/0512033.
[22] U. Hwang,et al. On the Determination of Ejecta Structure and Explosion Asymmetry from the X-Ray Knots of Cassiopeia A , 2003, astro-ph/0306119.
[23] A. Mezzacappa,et al. Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae , 2002, astro-ph/0210634.
[24] Martin C. Weisskopf,et al. Chandra X-ray Observatory (CXO): overview , 1999, Astronomical Telescopes and Instrumentation.
[25] J. Hughes,et al. Nucleosynthesis and Mixing in Cassiopeia A , 1999, The Astrophysical journal.
[26] C. McKee,et al. The Expulsion of Stellar Envelopes in Core-Collapse Supernovae , 1998, astro-ph/9807046.
[27] A. Burrows,et al. On the nature of core-collapse supernova explosions , 1995, astro-ph/9506061.