Modeling particle acceleration and non-thermal emission in supernova remnants
暂无分享,去创建一个
G. Peres | S. Orlando | F. Bocchino | M. Miceli | A. Tutone | O. Petruk | S. Ustamujic | E. Greco
[1] M. Ono,et al. The fully developed remnant of a neutrino-driven supernova , 2020, Astronomy & Astrophysics.
[2] G. Peres,et al. Modeling the mixed-morphology supernova remnant IC 443 , 2020, Astronomy & Astrophysics.
[3] S. Nagataki,et al. Three-dimensional modeling from the onset of the SN to the full-fledged SNR , 2020, 2009.01157.
[4] K. Takahashi,et al. Hydrodynamic simulations unravel the progenitor-supernova-remnant connection in SN 1987A , 2019, Astronomy & Astrophysics.
[5] M. Pohl,et al. PIC simulation methods for cosmic radiation and plasma instabilities , 2019, Progress in Particle and Nuclear Physics.
[6] M. Ono,et al. Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single-star and Binary Merger Progenitor Models for SN 1987A , 2019, The Astrophysical Journal.
[7] M. Ono,et al. From Supernova to Supernova Remnant: The Three-dimensional Imprint of a Thermonuclear Explosion , 2019, The Astrophysical Journal.
[8] D. Burrows,et al. Collisionless shock heating of heavy ions in SN 1987A , 2019, Nature Astronomy.
[9] M. Aloy,et al. 3D MHD modeling of the expanding remnant of SN 1987A , 2018, Astronomy & Astrophysics.
[10] M. Pohl,et al. Post-adiabatic supernova remnants in an interstellar magnetic field: oblique shocks and non-uniform environment , 2018, Monthly Notices of the Royal Astronomical Society.
[11] H. Katagiri,et al. Detection of Two TeV Shell-type Remnants at GeV Energies with FERMI LAT: HESS J1731-347 and SN 1006 , 2017, 1711.05499.
[12] S. Orlando,et al. Linking gamma-ray spectra of supernova remnants to the cosmic ray injection properties in the aftermath of supernovae , 2017, 1707.00136.
[13] H. Janka,et al. Production and Distribution of 44Ti and 56Ni in a Three-dimensional Supernova Model Resembling Cassiopeia A , 2016, 1610.05643.
[14] G. Dubner,et al. Modeling the shock-cloud interaction in SN 1006: Unveiling the origin of nonthermal X-ray and γ-ray emission , 2016, 1606.08748.
[15] M. L. Pumo,et al. MODELING SNR CASSIOPEIA A FROM THE SUPERNOVA EXPLOSION TO ITS CURRENT AGE: THE ROLE OF POST-EXPLOSION ANISOTROPIES OF EJECTA , 2016, 1603.03690.
[16] O. Petruk,et al. Post-adiabatic supernova remnants in an interstellar magnetic field: parallel and perpendicular shocks , 2015, 1511.06156.
[17] M. L. Pumo,et al. SUPERNOVA 1987A: A TEMPLATE TO LINK SUPERNOVAE TO THEIR REMNANTS , 2015, 1508.02275.
[18] A. Decourchelle,et al. THREE-DIMENSIONAL SIMULATIONS OF THE NON-THERMAL BROADBAND EMISSION FROM YOUNG SUPERNOVA REMNANTS INCLUDING EFFICIENT PARTICLE ACCELERATION , 2014, 1405.0614.
[19] G. Dubner,et al. SHOCK–CLOUD INTERACTION AND PARTICLE ACCELERATION IN THE SOUTHWESTERN LIMB OF SN 1006 , 2014, 1401.7196.
[20] A. Spitkovsky,et al. SIMULATIONS OF ION ACCELERATION AT NON-RELATIVISTIC SHOCKS. I. ACCELERATION EFFICIENCY , 2013, 1310.2943.
[21] A. Tzioumis,et al. EVOLUTION OF THE RADIO REMNANT OF SUPERNOVA 1987A: MORPHOLOGICAL CHANGES FROM DAY 7000 , 2013, 1310.3913.
[22] A. Decourchelle,et al. THREE-DIMENSIONAL SIMULATIONS OF THE THERMAL X-RAY EMISSION FROM YOUNG SUPERNOVA REMNANTS INCLUDING EFFICIENT PARTICLE ACCELERATION , 2012, 1210.0085.
[23] D. Ellison,et al. A GENERALIZED MODEL OF NONLINEAR DIFFUSIVE SHOCK ACCELERATION COUPLED TO AN EVOLVING SUPERNOVA REMNANT , 2012, 1203.3614.
[24] M. L. Pumo,et al. ROLE OF EJECTA CLUMPING AND BACK-REACTION OF ACCELERATED COSMIC RAYS IN THE EVOLUTION OF TYPE Ia SUPERNOVA REMNANTS , 2012, 1202.3593.
[25] S. Orlando,et al. Constraints on local interstellar magnetic field from non-thermal emission of SN1006 , 2011, 1105.2689.
[26] U. Hwang,et al. THE EFFECT OF A COSMIC RAY PRECURSOR IN SN 1006? , 2011, 1104.3736.
[27] S. Orlando,et al. Effects of non-uniform interstellar magnetic field on synchrotron X-ray and inverse-Compton γ-ray morphology of supernova remnants , 2010, 1011.1847.
[28] A. Tzioumis,et al. MULTIFREQUENCY RADIO MEASUREMENTS OF SUPERNOVA 1987A OVER 22 YEARS , 2009, 0912.4979.
[29] R. Teyssier,et al. 3D simulations of supernova remnants evolution including non-linear particle acceleration , 2009, 0912.4886.
[30] S. Orlando,et al. Effects of non-uniform interstellar magnetic field on synch rotron X-ray and inverse-Compton-ray morphology of SNRs , 2010 .
[31] G. Dubner,et al. Thermal emission, shock modification, and X-ray emitting ejecta in SN 1006 , 2009, 0903.3392.
[32] T. Kamae,et al. Three-dimensional Model of Broadband Emission from Supernova Remnants Undergoing Nonlinear Diffusive Shock Acceleration , 2008, 0806.4041.
[33] John P. Hughes,et al. Morphological Evidence for Azimuthal Variations of the Cosmic-Ray Ion Acceleration at the Blast Wave of SN 1006 , 2008, 0803.0805.
[34] Anatoly Spitkovsky,et al. Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last? , 2008, 0802.3216.
[35] P. Pagano,et al. The Importance of Magnetic-Field-Oriented Thermal Conduction in the Interaction of SNR Shocks with Interstellar Clouds , 2008, 0801.1403.
[36] G. Peres,et al. On the origin of asymmetries in bilateral supernova remnants , 2007, 0704.0890.
[37] P. Blasi. Nonlinear shock acceleration in the presence of seed particles , 2003, astro-ph/0310507.
[38] P. Blasi. A semi-analytical approach to non-linear shock acceleration , 2001, astro-ph/0104064.
[39] J. Blondin,et al. Rayleigh-Taylor Instabilities in Young Supernova Remnants Undergoing Efficient Particle Acceleration , 2001, astro-ph/0104024.
[40] R. Chevalier,et al. Instabilities and Clumping in Type Ia Supernova Remnants , 2000, astro-ph/0005105.