Modeling particle acceleration and non-thermal emission in supernova remnants

[1]  M. Ono,et al.  The fully developed remnant of a neutrino-driven supernova , 2020, Astronomy & Astrophysics.

[2]  G. Peres,et al.  Modeling the mixed-morphology supernova remnant IC 443 , 2020, Astronomy & Astrophysics.

[3]  S. Nagataki,et al.  Three-dimensional modeling from the onset of the SN to the full-fledged SNR , 2020, 2009.01157.

[4]  K. Takahashi,et al.  Hydrodynamic simulations unravel the progenitor-supernova-remnant connection in SN 1987A , 2019, Astronomy & Astrophysics.

[5]  M. Pohl,et al.  PIC simulation methods for cosmic radiation and plasma instabilities , 2019, Progress in Particle and Nuclear Physics.

[6]  M. Ono,et al.  Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single-star and Binary Merger Progenitor Models for SN 1987A , 2019, The Astrophysical Journal.

[7]  M. Ono,et al.  From Supernova to Supernova Remnant: The Three-dimensional Imprint of a Thermonuclear Explosion , 2019, The Astrophysical Journal.

[8]  D. Burrows,et al.  Collisionless shock heating of heavy ions in SN 1987A , 2019, Nature Astronomy.

[9]  M. Aloy,et al.  3D MHD modeling of the expanding remnant of SN 1987A , 2018, Astronomy & Astrophysics.

[10]  M. Pohl,et al.  Post-adiabatic supernova remnants in an interstellar magnetic field: oblique shocks and non-uniform environment , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  H. Katagiri,et al.  Detection of Two TeV Shell-type Remnants at GeV Energies with FERMI LAT: HESS J1731-347 and SN 1006 , 2017, 1711.05499.

[12]  S. Orlando,et al.  Linking gamma-ray spectra of supernova remnants to the cosmic ray injection properties in the aftermath of supernovae , 2017, 1707.00136.

[13]  H. Janka,et al.  Production and Distribution of 44Ti and 56Ni in a Three-dimensional Supernova Model Resembling Cassiopeia A , 2016, 1610.05643.

[14]  G. Dubner,et al.  Modeling the shock-cloud interaction in SN 1006: Unveiling the origin of nonthermal X-ray and γ-ray emission , 2016, 1606.08748.

[15]  M. L. Pumo,et al.  MODELING SNR CASSIOPEIA A FROM THE SUPERNOVA EXPLOSION TO ITS CURRENT AGE: THE ROLE OF POST-EXPLOSION ANISOTROPIES OF EJECTA , 2016, 1603.03690.

[16]  O. Petruk,et al.  Post-adiabatic supernova remnants in an interstellar magnetic field: parallel and perpendicular shocks , 2015, 1511.06156.

[17]  M. L. Pumo,et al.  SUPERNOVA 1987A: A TEMPLATE TO LINK SUPERNOVAE TO THEIR REMNANTS , 2015, 1508.02275.

[18]  A. Decourchelle,et al.  THREE-DIMENSIONAL SIMULATIONS OF THE NON-THERMAL BROADBAND EMISSION FROM YOUNG SUPERNOVA REMNANTS INCLUDING EFFICIENT PARTICLE ACCELERATION , 2014, 1405.0614.

[19]  G. Dubner,et al.  SHOCK–CLOUD INTERACTION AND PARTICLE ACCELERATION IN THE SOUTHWESTERN LIMB OF SN 1006 , 2014, 1401.7196.

[20]  A. Spitkovsky,et al.  SIMULATIONS OF ION ACCELERATION AT NON-RELATIVISTIC SHOCKS. I. ACCELERATION EFFICIENCY , 2013, 1310.2943.

[21]  A. Tzioumis,et al.  EVOLUTION OF THE RADIO REMNANT OF SUPERNOVA 1987A: MORPHOLOGICAL CHANGES FROM DAY 7000 , 2013, 1310.3913.

[22]  A. Decourchelle,et al.  THREE-DIMENSIONAL SIMULATIONS OF THE THERMAL X-RAY EMISSION FROM YOUNG SUPERNOVA REMNANTS INCLUDING EFFICIENT PARTICLE ACCELERATION , 2012, 1210.0085.

[23]  D. Ellison,et al.  A GENERALIZED MODEL OF NONLINEAR DIFFUSIVE SHOCK ACCELERATION COUPLED TO AN EVOLVING SUPERNOVA REMNANT , 2012, 1203.3614.

[24]  M. L. Pumo,et al.  ROLE OF EJECTA CLUMPING AND BACK-REACTION OF ACCELERATED COSMIC RAYS IN THE EVOLUTION OF TYPE Ia SUPERNOVA REMNANTS , 2012, 1202.3593.

[25]  S. Orlando,et al.  Constraints on local interstellar magnetic field from non-thermal emission of SN1006 , 2011, 1105.2689.

[26]  U. Hwang,et al.  THE EFFECT OF A COSMIC RAY PRECURSOR IN SN 1006? , 2011, 1104.3736.

[27]  S. Orlando,et al.  Effects of non-uniform interstellar magnetic field on synchrotron X-ray and inverse-Compton γ-ray morphology of supernova remnants , 2010, 1011.1847.

[28]  A. Tzioumis,et al.  MULTIFREQUENCY RADIO MEASUREMENTS OF SUPERNOVA 1987A OVER 22 YEARS , 2009, 0912.4979.

[29]  R. Teyssier,et al.  3D simulations of supernova remnants evolution including non-linear particle acceleration , 2009, 0912.4886.

[30]  S. Orlando,et al.  Effects of non-uniform interstellar magnetic field on synch rotron X-ray and inverse-Compton-ray morphology of SNRs , 2010 .

[31]  G. Dubner,et al.  Thermal emission, shock modification, and X-ray emitting ejecta in SN 1006 , 2009, 0903.3392.

[32]  T. Kamae,et al.  Three-dimensional Model of Broadband Emission from Supernova Remnants Undergoing Nonlinear Diffusive Shock Acceleration , 2008, 0806.4041.

[33]  John P. Hughes,et al.  Morphological Evidence for Azimuthal Variations of the Cosmic-Ray Ion Acceleration at the Blast Wave of SN 1006 , 2008, 0803.0805.

[34]  Anatoly Spitkovsky,et al.  Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last? , 2008, 0802.3216.

[35]  P. Pagano,et al.  The Importance of Magnetic-Field-Oriented Thermal Conduction in the Interaction of SNR Shocks with Interstellar Clouds , 2008, 0801.1403.

[36]  G. Peres,et al.  On the origin of asymmetries in bilateral supernova remnants , 2007, 0704.0890.

[37]  P. Blasi Nonlinear shock acceleration in the presence of seed particles , 2003, astro-ph/0310507.

[38]  P. Blasi A semi-analytical approach to non-linear shock acceleration , 2001, astro-ph/0104064.

[39]  J. Blondin,et al.  Rayleigh-Taylor Instabilities in Young Supernova Remnants Undergoing Efficient Particle Acceleration , 2001, astro-ph/0104024.

[40]  R. Chevalier,et al.  Instabilities and Clumping in Type Ia Supernova Remnants , 2000, astro-ph/0005105.