On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems

Abstract In this paper, we obtain a new sufficient condition on the existence of homoclinic solutions of a class of discrete nonlinear periodic systems by using critical point theory in combination with periodic approximations. We prove that it is also necessary in some special cases.

[1]  Jianshe Yu,et al.  On boundary value problems for a discrete generalized Emden-Fowler equation , 2006 .

[2]  S. Aubry,et al.  Breathers in nonlinear lattices: existence, linear stability and quantization , 1997 .

[3]  Andrey V. Gorbach,et al.  Discrete breathers — Advances in theory and applications , 2008 .

[4]  Zhan Zhou,et al.  Periodic solutions of higher-dimensional discrete systems , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  Haiping Shi,et al.  Existence of gap solitons in periodic discrete nonlinear Schrödinger equations , 2010 .

[6]  Vassilios M. Rothos,et al.  Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  G. Teschl Jacobi Operators and Completely Integrable Nonlinear Lattices , 1999 .

[8]  S. Aubry Discrete Breathers: Localization and transfer of energy in discrete Hamiltonian nonlinear systems , 2006 .

[9]  G. Kopidakis,et al.  VARIATIONAL PROOF FOR HARD DISCRETE BREATHERS IN SOME CLASSES OF HAMILTONIAN DYNAMICAL SYSTEMS , 2001 .

[10]  Demetrios N. Christodoulides,et al.  Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices , 2003, Nature.

[11]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[12]  Robert S. MacKay,et al.  Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators , 1994 .

[13]  Tal Carmon,et al.  Observation of discrete solitons in optically induced real time waveguide arrays. , 2003, Physical review letters.

[14]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[15]  S Gatz,et al.  Soliton propagation and soliton collision in double-doped fibers with a non-Kerr-like nonlinear refractive-index change. , 1992, Optics letters.

[16]  Guillaume James,et al.  Centre Manifold Reduction for Quasilinear Discrete Systems , 2003, J. Nonlinear Sci..

[17]  C. R. Willis,et al.  Discrete Breathers , 1997 .

[18]  Gap solitons in periodic discrete nonlinear Schrödinger equations , 2005, nlin/0502043.

[19]  R. Livi,et al.  Self-localization of Bose-Einstein condensates in optical lattices via boundary dissipation. , 2006, Physical review letters.

[20]  J. Mawhin,et al.  Critical Point Theory and Hamiltonian Systems , 1989 .

[21]  J. Herrmann,et al.  Soliton propagation in materials with saturable nonlinearity , 1991 .

[22]  Mordechai Segev,et al.  Discrete solitons in photorefractive optically induced photonic lattices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  A. Pankov Gap solitons in periodic discrete nonlinear Schrödinger equations , 2005, nlin/0502043.

[24]  Zhenya Yan,et al.  Envelope solution profiles of the discrete nonlinear Schrödinger equation with a saturable nonlinearity , 2009, Appl. Math. Lett..

[25]  B. A. Malomed,et al.  Discrete solitons in nonlinear Schrodinger lattices with a power-law nonlinearity , 2009 .

[26]  Gianni Arioli,et al.  Periodic motions of an infinite lattice of particles with nearest neighbor interaction , 1996 .

[27]  Yaron Silberberg,et al.  Discretizing light behaviour in linear and nonlinear waveguide lattices , 2003, Nature.

[28]  Gap and out-gap breathers in a binary modulated discrete nonlinear Schrödinger model , 2003, nlin/0312038.