Implant surface characteristics and their effect on osseointegration

Aim The aim of this literature review is to find current knowledge of dental implants focusing on materials, designs and surface modifications and to understand which implant surfaces have more predictable clinical outcomes.Research material and methods An electronic search using PubMed/Medline, Scopus and The Cochrane Library databases from 1950 onwards was conducted using keywords and terms. Published papers were then obtained online or from specialist libraries. References from individual published papers were also searched for relevant publications.Results Different designs, materials and methods to modify surfaces of implants have been discussed in this paper. Many laboratory studies using animal models reported improved biological outcomes with surface modification of implants at the microscopic level. Despite pure titanium being commercially the prime material of choice, ceramics have the potential to become the next generation of dental implants. Presently there is not sufficient scientific evidence for routine use of ceramic implants.Conclusions Pure titanium is the ideal material for implants. Rough implant surfaces are believed to deliver better osseointegration compared with smooth surfaces however, results from different studies vary. It is not clear which combination of different surface modifications provide a more predictable outcome. More standardised high quality prospective studies are required to prove which implant surfaces have the optimum properties for replacing missing teeth.

[1]  A. Wennerberg,et al.  Histologic evaluation of bone response to oxidized and turned titanium micro-implants in human jawbone. , 2003, The International journal of oral & maxillofacial implants.

[2]  S. Harris,et al.  Stimulation of bone formation in vitro and in rodents by statins. , 1999, Science.

[3]  Fuhua Yan,et al.  Effects of Simvastatin on bone healing around titanium implants in osteoporotic rats. , 2009, Clinical oral implants research.

[4]  J. Goldstein,et al.  Regulation of the mevalonate pathway , 1990, Nature.

[5]  M. Lell,et al.  Reconstruction of a mandibular defect with autogenous, autoclaved bone grafts and tissue engineering: An in vivo pilot study. , 2009, Journal of biomedical materials research. Part A.

[6]  E. Hunziker,et al.  Effect of surface topology on the osseointegration of implant materials in trabecular bone. , 1995, Journal of biomedical materials research.

[7]  L. Testarelli,et al.  Clinical, Radiographic, and Esthetic Evaluation of Immediately Loaded Laser Microtextured Implants Placed into Fresh Extraction Sockets in the Anterior Maxilla: A 2-Year Retrospective Multicentric Study , 2014, Implant dentistry.

[8]  J. Davies,et al.  Red blood cell and platelet interactions with titanium implant surfaces. , 2000, Clinical oral implants research.

[9]  G. Parr,et al.  Titanium: the mystery metal of implant dentistry. Dental materials aspects. , 1985, The Journal of prosthetic dentistry.

[10]  P. Ducheyne Titanium and calcium phosphate ceramic dental implants, surfaces, coatings and interfaces. , 1988, The Journal of oral implantology.

[11]  P. Somasundaran,et al.  Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. , 2004, Biomaterials.

[12]  D Siegele,et al.  Numerical investigations of the influence of implant shape on stress distribution in the jaw bone. , 1989, The International journal of oral & maxillofacial implants.

[13]  R M Pilliar,et al.  The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. , 1980, Clinical orthopaedics and related research.

[14]  E Ruoslahti,et al.  New perspectives in cell adhesion: RGD and integrins. , 1987, Science.

[15]  M. Becker Ancient "dental implants": a recently proposed example from France evaluated with other spurious examples. , 1999, The International journal of oral & maxillofacial implants.

[16]  George A. Zarb,et al.  Introduction to osseointegration in clinical dentistry , 1983 .

[17]  T. Albrektsson,et al.  Biological aspects of implant dentistry: osseointegration. , 1994, Periodontology 2000.

[18]  Hom-Lay Wang,et al.  Dental Implant Design and Its Relationship to Long-Term Implant Success , 2003, Implant dentistry.

[19]  Andrea Bagno,et al.  Surface treatments and roughness properties of Ti-based biomaterials , 2004, Journal of materials science. Materials in medicine.

[20]  P. Branemark,et al.  Intra-Osseous Anchorage of Dental Prostheses , 1970, Scandinavian Journal of Plastic and Reconstructive Surgery.

[21]  J. Jansen,et al.  Implant Surface Roughness and Bone Healing: a Systematic Review , 2006, Journal of dental research.

[22]  H. Füredi-Milhofer,et al.  Biomimetic organic-inorganic nanocomposite coatings for titanium implants. In vitro and in vivo biological testing. , 2010, Journal of biomedical materials research. Part A.

[23]  B. Boyan,et al.  The role of implant surface characteristics in the healing of bone. , 1996, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[24]  D. Koth,et al.  Clinical and statistical analyses of human clinical trials with the single crystal aluminum oxide endosteal dental implant: five-year results. , 1988, The Journal of prosthetic dentistry.

[25]  Jörgen Lindström,et al.  Intra-osseous anchorage of dental prostheses. I. Experimental studies , 1971 .

[26]  C. V. van Blitterswijk,et al.  Flexible (Polyactive) versus rigid (hydroxyapatite) dental implants. , 1997, International journal of oral and maxillofacial surgery.

[27]  T. Webster,et al.  Enhanced functions of osteoblasts on nanophase ceramics. , 2000, Biomaterials.

[28]  P. Layrolle,et al.  Surface treatments of titanium dental implants for rapid osseointegration. , 2007, Dental materials : official publication of the Academy of Dental Materials.

[29]  J E Lemons,et al.  Dental implant biomaterials. , 1990, Journal of the American Dental Association.

[30]  Julie Gold,et al.  An in vivo study of bone response to implants topographically modified by laser micromachining. , 2003, Biomaterials.

[31]  W. Lacefield Current status of ceramic coatings for dental implants. , 1998, Implant dentistry.

[32]  E P Lautenschlager,et al.  Titanium and titanium alloys as dental materials. , 1993, International dental journal.

[33]  B Rangert,et al.  Influence of implant diameters on the integration of screw implants. An experimental study in rabbits. , 1997, International journal of oral and maxillofacial surgery.

[34]  Balshi Tj,et al.  Analysis of 356 pterygomaxillary implants in edentulous arches for fixed prosthesis anchorage. , 1999 .

[35]  Richard Skalak,et al.  The interface zone of inorganic implantsIn vivo: Titanium implants in bone , 2006, Annals of Biomedical Engineering.

[36]  F. Rahemtulla,et al.  Proteoglycans at the bone-implant interface. , 1998, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[37]  P. Netz,et al.  An Experimental Study on Dogs , 1980 .

[38]  I. Jackson,et al.  Complex craniofacial reconstruction using an implant-supported prosthesis: case report with long-term follow-up. , 1997, The International journal of oral & maxillofacial implants.

[39]  D. Koth,et al.  The single-crystal sapphire endosteal dental implant: material characteristics and 18-month experimental animal trials. , 1982, The Journal of prosthetic dentistry.

[40]  T. Albrektsson,et al.  Qualitative and quantitative observations of bone tissue reactions to anodised implants. , 2002, Biomaterials.

[41]  F. He,et al.  Simvastatin-loaded porous implant surfaces stimulate preosteoblasts differentiation: an in vitro study. , 2011, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[42]  L F Cooper,et al.  Biologic determinants of bone formation for osseointegration: clues for future clinical improvements. , 1998, The Journal of prosthetic dentistry.

[43]  T. Gasser,et al.  In Vitro Studies , 1992 .

[44]  R. Kohal,et al.  Ceramic abutments and ceramic oral implants. An update. , 2008, Periodontology 2000.

[45]  J. Hahn,et al.  LONG‐TERM EFFICACY OF HYDROXYAPATITE‐COATED CYLINDRICAL IMPLANTS , 1997, Implant dentistry.

[46]  J. Y. Martin,et al.  Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. , 1996, Journal of biomedical materials research.

[47]  A. Kirsch,et al.  Variations in occlusal forces with a resilient internal implant shock absorber. , 1990, The International journal of oral & maxillofacial implants.

[48]  R. Meffert,et al.  Dental implants: a review. , 1992, Journal of periodontology.

[49]  L. Girard,et al.  False teeth of the Roman world , 1998, Nature.

[50]  T. Albrektsson,et al.  Editorial: Towards optimized treatment outcomes for dental implants , 1998 .

[51]  J. Jansen,et al.  A mechanical evaluation of TiO2-gritblasted and Ca-P magnetron sputter coated implants placed into the trabecular bone of the goat: Part 1. , 2000, Clinical oral implants research.

[52]  P. Coulthard,et al.  Interventions for replacing missing teeth: different types of dental implants. , 2007, The Cochrane database of systematic reviews.

[53]  L. Skovgaard,et al.  Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits. , 1995, Journal of biomedical materials research.

[54]  A. Holmen,et al.  Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. , 2006, Biomaterials.

[55]  N. Lang,et al.  Influence of initial implant mobility on the integration of titanium implants. An experimental study in rabbits. , 1996 .

[56]  P. Trisi,et al.  Bone-implant contact and bone quality: evaluation of expected and actual bone contact on machined and osseotite implant surfaces. , 2002, The International journal of periodontics & restorative dentistry.

[57]  L. Cooper,et al.  Formation of mineralizing osteoblast cultures on machined, titanium oxide grit-blasted, and plasma-sprayed titanium surfaces. , 1999, The International journal of oral & maxillofacial implants.

[58]  Jan E Ellingsen,et al.  The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. , 2009, Biomaterials.

[59]  Misch Ce Divisions of available bone in implant dentistry. , 1990 .

[60]  Patrik Schmuki,et al.  TiO2 nanotubes : Tailoring the geometry in H3PO4/HF electrolytes , 2006 .

[61]  I Macnab,et al.  The rate of bone ingrowth into porous metal. , 1976, Journal of biomedical materials research.

[62]  M. Kern,et al.  Osseointegration and clinical success of zirconia dental implants: a systematic review. , 2008, The International journal of prosthodontics.

[63]  Ender Kazazoğlu,et al.  Zirconia dental implants: a literature review. , 2011, The Journal of oral implantology.

[64]  R. Mericske-Stern,et al.  Treatment outcomes with implant-supported overdentures: clinical considerations. , 1998, The Journal of prosthetic dentistry.

[65]  A. Piattelli,et al.  10-year follow-up of immediately loaded implants with TiUnite porous anodized surface. , 2012, Clinical implant dentistry and related research.

[66]  B. Kasemo,et al.  Biomaterial and implant surfaces: a surface science approach. , 1988, The International journal of oral & maxillofacial implants.

[67]  L. Rasmusson,et al.  A 10-year follow-up study of titanium dioxide-blasted implants. , 2005, Clinical implant dentistry and related research.

[68]  S. Heo,et al.  Implant Surface Conditioning with Tetracycline-HCl: A SEM Study , 2007 .

[69]  Thomas J Webster,et al.  Osteoblast function on nanophase alumina materials: Influence of chemistry, phase, and topography. , 2003, Journal of biomedical materials research. Part A.

[70]  T. Ichijo,et al.  Examination of human bone surrounded by a dense hydroxyapatite dental implant after long-term use. , 1992, Journal of long-term effects of medical implants.

[71]  M. Martignoni,et al.  Immediate loading of Brånemark System TiUnite and machined-surface implants in the posterior mandible: a randomized open-ended clinical trial. , 2003, Clinical implant dentistry and related research.

[72]  L. Cooper,et al.  Generalizations regarding the process and phenomenon of osseointegration. Part II. In vitro studies. , 1998, The International journal of oral & maxillofacial implants.

[73]  T. Albrektsson,et al.  Bone tissue response to commercially pure titanium implants blasted with fine and coarse particles of aluminum oxide. , 1996, The International journal of oral & maxillofacial implants.

[74]  Jean-Pierre Bernard,et al.  The use of reduced healing times on ITI implants with a sandblasted and acid-etched (SLA) surface: early results from clinical trials on ITI SLA implants. , 2002, Clinical oral implants research.

[75]  W. Gillette,et al.  Titanium endosseous implant-soft tissue interface: a literature review. , 1991, Journal of periodontology.

[76]  Carlo Galli,et al.  Comparison of human mandibular osteoblasts grown on two commercially available titanium implant surfaces. , 2005, Journal of periodontology.

[77]  K. Donath,et al.  The histopathology of different foreign-body reactions in oral soft tissue and bone tissue , 2006, Virchows Archiv A.

[78]  Ann Wennerberg,et al.  Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. , 2004, The International journal of prosthodontics.

[79]  T. Albrektsson,et al.  Towards optimized treatment outcomes for dental implants. , 1998, The Journal of prosthetic dentistry.

[80]  M. Tonetti,et al.  Roughness response genes in osteoblasts. , 2004, Bone.

[81]  T. Webster,et al.  Use of Anodized Titanium in Drug Delivery Applications , 2006 .

[82]  F. Schwarz,et al.  Current findings regarding zirconia implants. , 2014, Clinical implant dentistry and related research.

[83]  J. Davies,et al.  Mechanisms of endosseous integration. , 1998, The International journal of prosthodontics.

[84]  L Sennerby,et al.  Histologic evaluation of the bone integration of TiO(2) blasted and turned titanium microimplants in humans. , 2001, Clinical oral implants research.

[85]  H. Oxlund,et al.  Simvastatin treatment partially prevents ovariectomy-induced bone loss while increasing cortical bone formation. , 2004, Bone.

[86]  L. Cooper,et al.  Generalizations regarding the process and phenomenon of osseointegration. Part I. In vivo studies. , 1998, The International journal of oral & maxillofacial implants.

[87]  Marina Andreiotelli,et al.  Are ceramic implants a viable alternative to titanium implants? A systematic literature review. , 2009, Clinical oral implants research.

[88]  R. Craig,et al.  Strategies to affect bone remodeling: Osteointegration , 1993, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[89]  C. Gay-Escoda,et al.  In vivo low-density bone apposition on different implant surface materials. , 2009, International journal of oral and maxillofacial surgery.

[90]  H. Kawahara Cellular responses to implant materials: biological, physical and chemical factors. , 1983, International dental journal.

[91]  V A Marker,et al.  Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. , 2000, The International journal of oral & maxillofacial implants.

[92]  T. Albrektsson Hydroxyapatite-coated implants: a case against their use. , 1998, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[93]  Matthew J Dalby,et al.  Genomic expression of mesenchymal stem cells to altered nanoscale topographies , 2008, Journal of The Royal Society Interface.

[94]  R. Pilliar,et al.  Calcium phosphate sol-gel-derived thin films on porous-surfaced implants for enhanced osteoconductivity. Part II: Short-term in vivo studies. , 2004, Biomaterials.

[95]  P. Layrolle,et al.  Osteoblastic cell behaviour on different titanium implant surfaces. , 2008, Acta biomaterialia.

[96]  V. Goldberg,et al.  The influence of a hydroxyapatite and tricalcium-phosphate coating on bone growth into titanium fiber-metal implants. , 1994, The Journal of bone and joint surgery. American volume.

[97]  J. Jansen,et al.  Effects of implant surface coatings and composition on bone integration: a systematic review. , 2009, Clinical oral implants research.

[98]  G. Daculsi,et al.  Novel biomaterials for bisphosphonate delivery. , 2005, Biomaterials.

[99]  Je-Kang Du,et al.  Biomechanical analysis of alveolar bone stress around implants with different thread designs and pitches in the mandibular molar area , 2011, Clinical Oral Investigations.

[100]  F. Reinholt,et al.  Effect of proline-rich synthetic peptide-coated titanium implants on bone healing in a rabbit model. , 2013, The International journal of oral & maxillofacial implants.

[101]  G. Kannangara,et al.  Morphological stability of hydroxyapatite precursor , 2003 .

[102]  D. Cochran,et al.  Bone apposition around two different sandblasted and acid-etched titanium implant surfaces: a histomorphometric study in canine mandibles. , 2008, Clinical oral implants research.

[103]  A. Holmen,et al.  Histomorphometric and removal torque analysis for TiO2-blasted titanium implants. An experimental study on dogs. , 1992, Clinical oral implants research.

[104]  A. Wennerberg,et al.  Improved retention and bone-tolmplant contact with fluoride-modified titanium implants. , 2004, The International journal of oral & maxillofacial implants.

[105]  Paulo G Coelho,et al.  Classification of osseointegrated implant surfaces: materials, chemistry and topography. , 2010, Trends in biotechnology.

[106]  Pierre Layrolle,et al.  Nanotechnology and Dental Implants , 2010, International journal of biomaterials.

[107]  T. Albrektsson,et al.  Implant fixation improved by close fit. Cylindrical implant-bone interface studied in rabbits. , 1988, Acta orthopaedica Scandinavica.

[108]  Patrik Schmuki,et al.  Nanosize and vitality: TiO2 nanotube diameter directs cell fate. , 2007, Nano letters.

[109]  M. Zablotsky HYDROXYAPATITE COATINGS IN IMPLANT DENTISTRY , 1992, Implant dentistry.

[110]  M. Yoshinari,et al.  The bisphosphonate pamidronate on the surface of titanium stimulates bone formation around tibial implants in rats. , 2005, Biomaterials.

[111]  Pilliar Rm Dental implants: materials and design. , 1990 .

[112]  K. Koyano,et al.  Simvastatin promotes osteogenesis around titanium implants. , 2004, Clinical oral implants research.

[113]  J. Jansen,et al.  A histological evaluation of TiO2-gritblasted and Ca-P magnetron sputter coated implants placed into the trabecular bone of the goat: Part 2. , 2000, Clinical oral implants research.

[114]  G. W. Hastings,et al.  Book reviewDefinitions in Biomaterials: Progress in Biomedical Engineering 4, Editor: D.F. Williams. Elsevier, Amsterdam, 1987, pp viii + 72, US $63.50 , 1989 .

[115]  A. Biesbrock,et al.  Evaluation of the clinical predictability of hydroxyapatite-coated endosseous dental implants: a review of the literature. , 1995, The International journal of oral & maxillofacial implants.

[116]  T Albrektsson,et al.  Suggested guidelines for the topographic evaluation of implant surfaces. , 2000, The International journal of oral & maxillofacial implants.

[117]  T Albrektsson,et al.  Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. , 1996, Biomaterials.