Inherently chiral cone-calix[4]arenes via a subsequent upper rim ring-closing/opening methodology.

Access to chiral calix[4]arenes can unlock novel supramolecular architectures for enantioselective catalysis and molecular recognition. However, accessibility to these structures has been significantly hindered so far. We report herein the synthesis and characterization of di- and trifunctionalized cone-calix[4]arenes featuring a lactone moiety spanning the distal positions at the upper rim. The lactones force the whole skeleton to assume pinched-cone conformations. The ring-closure is favored by the high conformational flexibility of the calixarene scaffold. The new lactones are remarkably stable in the solid state, while a quick hydrolysis to restore the parent carboxylic acids occurs in solution under acidic/basic conditions. Slow aminolyses of lactones 2-3 yield inherently chiral products featuring three different functionalities at the upper rim, at room temperature. The subsequent ring-closing/opening methodology presented here highlights the versatility of these lactones as powerful synthons for the preparation of a variety of threefold upper rim functionalized, inherently chiral calix[4]arenes fixed in the cone structure.

[1]  M. Rezende,et al.  Experimental and DFT evaluation of the 1 H and 13 C NMR chemical shifts for calix[4]arenes , 2018 .

[2]  G. Arnott Inherently Chiral Calixarenes: Synthesis and Applications. , 2018, Chemistry.

[3]  V. Kalchenko,et al.  Synthesis of an Enantiomerically Pure Inherently Chiral Calix[4]Arene Phosphonic Acid and Its Evaluation as an Organocatalyst. , 2018, The Journal of organic chemistry.

[4]  K. Abboud,et al.  Selective and Sequential Aminolysis of Benzotrifuranone: Synergism of Electronic Effects and Ring Strain Gradient. , 2016, The Journal of organic chemistry.

[5]  V. Jain,et al.  Calix-Based Nanoparticles: A Review , 2016, Topics in Current Chemistry.

[6]  P. Théato,et al.  Activated Ester Containing Polymers: Opportunities and Challenges for the Design of Functional Macromolecules. , 2016, Chemical reviews.

[7]  Delia A. Haynes,et al.  Cyanocalix[4]arenes: synthesis, crystal structures and reactivity studies , 2016 .

[8]  F. Sansone,et al.  Moulding calixarenes for biomacromolecule targeting. , 2015, Chemical communications.

[9]  O. Reinaud,et al.  Rational Strategies for the Selective Functionalization of Calixarenes , 2015 .

[10]  Ying‐Wei Yang,et al.  Controlled drug delivery systems based on calixarenes , 2015 .

[11]  T. Hoye,et al.  A guide to small-molecule structure assignment through computation of (1H and 13C) NMR chemical shifts , 2014, Nature Protocols.

[12]  Fafu Yang,et al.  Mini-review: calixarene liquid crystals , 2014, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[13]  A. Casnati,et al.  One-shot preparation of an inherently chiral trifunctional calix[4]arene from an easily available cone-triformylcalix[4]arene. , 2013, Organic & biomolecular chemistry.

[14]  F. Sansone,et al.  Multivalent glycocalixarenes for recognition of biological macromolecules: glycocalyx mimics capable of multitasking. , 2013, Chemical Society reviews.

[15]  R. Cacciapaglia,et al.  Fast transimination in organic solvents in the absence of proton and metal catalysts. A key to imine metathesis catalyzed by primary amines under mild conditions , 2013 .

[16]  F. Sansone,et al.  ATP cleavage by cone tetraguanidinocalix[4]arene. , 2012, Organic & biomolecular chemistry.

[17]  A. Casnati,et al.  Highly efficient intramolecular Cannizzaro reaction between 1,3-distal formyl groups at the upper rim of a cone-calix[4]arene. , 2012, Organic & biomolecular chemistry.

[18]  D. Matt,et al.  Synthesis of Calixarene‐Based Bis(iminophosphoranes) and Their Use in Suzuki–Miyaura Cross‐Coupling , 2012 .

[19]  V. Franceschi,et al.  Lower rim guanidinocalix[4]arenes: macrocyclic nonviral vectors for cell transfection. , 2012, Bioconjugate chemistry.

[20]  F. Sansone,et al.  Upper rim guanidinocalix[4]arenes as artificial phosphodiesterases. , 2012, The Journal of organic chemistry.

[21]  V. Böhmer,et al.  Calixarenes: A Versatile Class of Macrocyclic Compounds , 2011 .

[22]  Jun Luo,et al.  Inherently chiral calixarenes: a decade’s review , 2011 .

[23]  Iris M. Oppel,et al.  Multifold Photocyclization Reactions of Styrylcalix[4]arenes , 2010 .

[24]  A. Szumna Inherently chiral concave molecules--from synthesis to applications. , 2010, Chemical Society reviews.

[25]  M. Mocerino,et al.  A brief review of C n -symmetric calixarenes and resorcinarenes , 2010 .

[26]  S. Shimizu,et al.  Synthesis and resolution of a multifunctional inherently chiral calix[4]arene with an ABCD substitution pattern at the wide rim: the effect of a multifunctional structure in the organocatalyst on enantioselectivity in asymmetric reactions. , 2009, The Journal of organic chemistry.

[27]  Carl Redshaw,et al.  The use of calixarenes in metal-based catalysis. , 2008, Chemical reviews.

[28]  Roberta Cacciapagliaa,et al.  On the 'livingness' of a dynamic library of cyclophane formaldehyde acetals incorporating calix[4]arene subunits , 2008 .

[29]  C. Massera,et al.  Self-Assembled Chiral Dimeric Capsules from Difunctionalized N,C-Linked Peptidocalix[4]arenes : Scope and Limitations , 2008 .

[30]  Liping Zhang,et al.  Calix[4]arenes with siloxanes bridging opposite rings. , 2007, The Journal of organic chemistry.

[31]  M. Fujio,et al.  Structure-reactivity correlations in nucleophilic substitution reactions of Y-substituted phenyl X-substituted benzoates with anionic and neutral nucleophiles. , 2006, Organic & biomolecular chemistry.

[32]  Xubo Hu,et al.  Glycoside-Clustering Round Calixarenes toward the Development of Multivalent Carbohydrate Ligands. Synthesis and Conformational Analysis of Calix[4]arene O- and C-Glycoconjugates , 2002 .

[33]  O. Repič,et al.  A mild method for ring-opening aminolysis of lactones , 2001 .

[34]  R. Ungaro,et al.  Calixarenes in action , 2000 .

[35]  T. Tilley,et al.  A Simple, Efficient Route to Cage Compounds via Zirconocene Coupling , 1998 .

[36]  F. Sansone,et al.  Synthesis and Properties of O‐Glycosyl Calix[4]Arenes (Calixsugars) , 1997 .

[37]  D. Reinhoudt,et al.  Cavity effect of calix[4]arenes in electrophilic aromatic substitution reactions , 1996 .

[38]  R. Ungaro,et al.  Highly distorted Cone calix[4]arenes through intramolecular mc murry coupling reaction , 1995 .

[39]  V. Böhmer Calixarenes, Macrocycles with (Almost) Unlimited Possibilities , 1995 .

[40]  R. Ungaro,et al.  Direct Regioselective Formylation of Tetraalkoxycalix[4]arenes Fixed in the Cone Conformation and Synthesis of New Cavitands , 1995 .

[41]  R. Ungaro,et al.  Calix[4]arenes Blocked in a Rigid Cone Conformation by Selective Functionalization at the Lower Rim , 1995 .

[42]  L. Zetta,et al.  Calix[4]arenes with four differently substituted phenolic units , 1987 .

[43]  E. Dalcanale,et al.  Selective oxidation of aldehydes to carboxylic acids with sodium chlorite-hydrogen peroxide , 1986 .

[44]  A. J. Kirby,et al.  Effective Molarities for Intramolecular Reactions , 1980 .

[45]  D. W. Bolen,et al.  Hydrolysis enthalpy changes for selected five- and six-membered cyclic esters , 1978 .