Bioinformatic analysis of post‐transcriptional regulation by uORF in human and mouse

[1]  M. Hentze,et al.  The uORF-containing thrombopoietin mRNA escapes nonsense-mediated decay (NMD) , 2006, Nucleic acids research.

[2]  Mark L Crowe,et al.  Evidence for conservation and selection of upstream open reading frames suggests probable encoding of bioactive peptides , 2006, BMC Genomics.

[3]  M. Kozak,et al.  Regulation of translation via mRNA structure in prokaryotes and eukaryotes. , 2005, Gene.

[4]  Allan Jacobson,et al.  Ribosome occupancy of the yeast CPA1 upstream open reading frame termination codon modulates nonsense-mediated mRNA decay. , 2005, Molecular cell.

[5]  S. Batalov,et al.  Antisense Transcription in the Mammalian Transcriptome , 2005, Science.

[6]  Graziano Pesole,et al.  uAUG and uORFs in human and rodent 5'untranslated mRNAs. , 2005, Gene.

[7]  Yoshihide Hayashizaki,et al.  Disclosing hidden transcripts: mouse natural sense-antisense transcripts tend to be poly(A) negative and nuclear localized. , 2005, Genome research.

[8]  Sumio Sugano,et al.  Analysis of small human proteins reveals the translation of upstream open reading frames of mRNAs. , 2004, Genome research.

[9]  Francisco Martinez-Murillo,et al.  Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise , 2004, Nature Genetics.

[10]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Kanako O. Koyanagi,et al.  Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones , 2004, PLoS Biology.

[12]  L. Maquat,et al.  Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. , 2003, Molecular cell.

[13]  J. McCarthy,et al.  Regulation of fungal gene expression via short open reading frames in the mRNA 5′untranslated region , 2003, Molecular microbiology.

[14]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[15]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[16]  E. Birney,et al.  Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs , 2002, Nature.

[17]  M. Kozak,et al.  Pushing the limits of the scanning mechanism for initiation of translation , 2002, Gene.

[18]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[19]  J. Mendell,et al.  When the Message Goes Awry Disease-Producing Mutations that Influence mRNA Content and Performance , 2001, Cell.

[20]  L. Maquat,et al.  Quality Control of mRNA Function , 2001, Cell.

[21]  C. Rodrigues-Pousada,et al.  The yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability. , 1998, Nucleic acids research.

[22]  J. McCarthy,et al.  Disruption of Ribosomal Scanning on the 5′-Untranslated Region, and Not Restriction of Translational Initiation per se, Modulates the Stability of Nonaberrant mRNAs in the Yeast Saccharomyces cerevisiae* , 1997, The Journal of Biological Chemistry.

[23]  A. Jacobson,et al.  Determinants of mRNA stability in Dictyostelium discoideum amoebae: differences in poly(A) tail length, ribosome loading, and mRNA size cannot account for the heterogeneity of mRNA decay rates , 1988, Molecular and cellular biology.

[24]  I. Purvis,et al.  The relationship between mRNA stability and length in Saccharomyces cerevisiae. , 1986, Nucleic acids research.

[25]  M. Kozak,et al.  Point mutations close to the AUG initiator codon affect the efficiency of translation of rat preproinsulin in vivo , 1984, Nature.

[26]  Anthony Kerlavage,et al.  The Celera Discovery System. , 2002, Nucleic acids research.

[27]  Donna R. Maglott,et al.  RefSeq and LocusLink: NCBI gene-centered resources , 2001, Nucleic Acids Res..